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ABSTRACT 

Linear cryptanalysis attacks are a threat against cryptosystems. These attacks can be 

defended against by using combiner functions composed of highly nonlinear Boolean 

functions. Bent functions, which have the highest possible nonlinearity, are uncommon. 

As the number of variables in a Boolean function increases, bent functions become 

extremely rare. A method of computing the nonlinearity of Boolean functions using the 

Fast Walsh Transform (FWT) is presented. 

The SRC-6 reconfigurable computer allows testing of functions at a much faster 

rate than a PC. With a clock frequency of 100 MHz, throughput of the SRC-6 is 

100,000,000 functions per second. An implementation of the FWT used to compute the 

nonlinearity of Boolean functions with up to five variables is presented.   

Since there are 22
n

Boolean functions of n variables, computation of the 

nonlinearity of every Boolean function with six or more variables takes thousands of 

years to complete. This makes discovery of bent functions difficult for large n. An 

algorithm is presented that uses information in the FWT of a function to produce similar 

functions with increasingly higher nonlinearity. This algorithm demonstrated the ability 

to enumerate every bent function for n = 4 without the necessity of exhaustively testing 

all four-variable functions. 
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EXECUTIVE SUMMARY 

Linear cryptanalysis attacks are a threat against cryptosystems. These attacks can be 

defended against by using combiner functions composed of highly nonlinear Boolean 

functions. Bent functions, which were introduced by O.S. Rothaus in the 1960s, are 

noteworthy for this reason. Bent functions are Boolean functions having the largest 

possible minimum Hamming distance from the set of affine functions. Thus, bent 

functions have the highest possible nonlinearity. Bent functions, however, are 

uncommon. As the number of variables in a Boolean function increases, bent functions 

become extremely rare. In this thesis, a method of computing the nonlinearity of Boolean 

functions using the Fast Walsh Transform (FWT) is presented. 

The FWT is an efficient algorithm for computing a Walsh-Hadamard Transform 

(WHT). The WHT computation involves use of a recursive matrix operation, that is 

1 1

1 1

n n
n

n n

WHT WHT
WHT

WHT WHT
 

 

 
   

. The FWT computation, on the other hand, involves 

repeatedly applying an “in-place butterfly” module to the inputs of a function's truth table 

(TT). The in-place butterfly takes two inputs a and b from a TT and returns output values 

a b and a b  that are placed in the positions that were previously occupied by a and b, 

respectively. The computational complexity of the FWT for a function with n variables is 

n log(n), whereas it is n2 for the WHT.   

The components of a function's FWT can be normalized, giving the Hamming 

distance between the function and all the affine functions. The minimum of these 

Hamming distances is the nonlinearity of the function.  

The SRC-6 reconfigurable computer allows testing of functions at a much faster 

rate than a PC. With a clock frequency of 100 MHz, throughput of the SRC-6 is 

100,000,000 functions per second. An implementation of the FWT used to compute the 

nonlinearity of Boolean functions with up to five variables is presented. This 

implementation was shown to have comparable computation frequency to previously 

used methods for computing nonlinearity. However, since there are 22
n

Boolean functions 



 xviii

of n variables, computation of the nonlinearity of every Boolean function with six or 

more variables takes thousands of years to complete. This makes discovery of the set of 

bent functions difficult for large n.  

Previous research on bent functions has discussed methods that reduce the 

computation time of the nonlinearity of all functions for a given n. Other research has 

focused on identifying specific groups of Boolean functions that are rich in bent 

functions, which would allow discovery of all bent functions for a given n without having 

to exhaustively all 22
n

functions. This thesis, on the other hand, investigated the 

possibility of altering the TT of a non-bent Boolean function by using information 

contained in its FWT to produce a new function with higher nonlinearity.  

Several observations on the distribution of weights and nonlinearities of Boolean 

functions suggested the ability to reliably discover similar functions of higher 

nonlinearity through a trial-and-error technique. Observations on the characteristics of 

these functions' FWTs provided criteria to efficiently produce functions of higher 

nonlinearity. These observations led to the development of an algorithm that can reliably 

and efficiently discover Boolean functions of high nonlinearity. 

An algorithm is presented that uses information in the FWT of a function to 

produce similar functions with increasingly higher nonlinearity. This algorithm 

demonstrated the ability to enumerate every bent function for n = 4 without the necessity 

of exhaustively testing all four-variable functions. 
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I. INTRODUCTION  

A. OBJECTIVE 

The motivation for this study is the importance bent Boolean functions play in 

modern cryptology. The availability of the SRC-6 computer at the Naval Postgraduate 

School has allowed the generation and testing of billions of Boolean functions. A 

reconfigurable computer has never previously been used to implement a Fast Walsh 

Transform in order to test Boolean functions. The objective is to be able to quickly 

determine the nonlinearity of a given Boolean function using a Fast Walsh Transform and 

subsequently discover a way to identify how close a given function is to a bent Boolean 

function. 

B. BACKGROUND 

O. S. Rothaus introduced bent Boolean functions in the mid 1960s and published 

in open literature in 1976 [1].  The term bent was chosen to indicate the opposite of 

linear.  A bent function is a Boolean function that has maximum distance from each 

member of the set of affine functions. Bent functions have practical applications in 

cryptography, coding theory, and spread spectrum communications [2]. This thesis 

concentrates on bent functions as they apply to cryptography.  The Department of 

Defense and the National Security Agency are interested in developing 

encryption/decryption methods that are resilient to attack. Code-breaking efforts during 

World War II demonstrated the importance of communication security in military 

operations. Communication security is a fundamental aspect of Department of Defense 

Information Warfare doctrine [3].  Having a method for dependably discovering bent 

Boolean functions can enable the creation of a source of cryptographic elements and can 

enhance communication security.  

Security of information flow across the Internet is also an important issue. The 

National Institute of Standards and Technology (NIST) adopted the Advanced Encryption 

Standard (AES) in 1998. The AES uses a block cipher involving a randomly generated 

key combined with the plaintext message. Some of these steps involve substitution boxes 
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(S-boxes) with high nonlinearity characteristics. The encryption aspect of the cipher is an 

area where bent functions, or modified bent functions, are of particular importance. 

Research on cryptographic Boolean functions is being conducted by universities, 

technical businesses and government agencies [4], [5], [6].  In code-breaking, a linear 

attack is a well-known method. However, highly nonlinear Boolean functions are 

resistant against this attack.  The nonlinearity of Boolean functions is only one property 

necessary to develop strong cryptographic functions.  Characteristics like propagation 

criteria, strict avalanche criteria, correlation immunity, and balancedness (among other 

criteria) are also being researched [7].  In addition, construction of bent functions from 

smaller bent functions is a topic of increasing study [8].  The ability to combine small 

bent functions into larger bent functions will lessen the burden of exhaustively testing 

and searching for bent functions with larger numbers of variables.  This is useful because 

there are so many functions for n≥6 that it is impractical to enumerate all of them.  

C. METHOD 

The truth table (TT) of a Boolean function is an output string of ones and zeros 

obtained by assigning all combinations of inputs to the variables that constitute the 

Boolean function.   

The TT of a Boolean function is used as an input to the Fast Walsh Transform. A 

Fast Walsh Transform (FWT) is a simplified version of a Walsh-Hadamard Transform 

[9].  The FWT of a Boolean function allows one to identify if the function is bent simply 

by inspection.  In addition, the nonlinearity can be quickly obtained by manipulating the 

FWT. By contrast, nonlinearity has previously been computed by finding the distance 

between the Boolean function in question from every affine function and taking the 

maximum of these distances. The TT of a Boolean function on n variables has a length of 

2n, and the number of affine functions is 2n+1, which shows that as n increases, the length 

of the TT and the number of affine functions doubles at every single step. 

The SRC-6 computer is used here to perform computations on many Boolean 

functions.  This computer uses a Field Programmable Gate Array (FPGA) that turns 

VERILOG and C code into hardware that executes faster than a PC.  An important 
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advantage that the FPGA provides is the ability to pipeline.  This is prominent with a 

large circuit with significant delay.  Pipelining allows the computer to divide a process 

into multiple steps, so that while one function moves from the first stage to the second 

stage, another function can be input to the first stage.  This ability to test many functions 

simultaneously greatly speeds up computation time.  With pipelining, a function can be 

tested every clock period.  The SRC-6 uses a 100 MHz FPGA processor, allowing one 

hundred million functions to be evaluated every second.  This makes the SRC-6 much 

faster than a modern PC, which has a faster processor but cannot pipeline in the way the 

SRC-6 can. 

D. RELATED WORK 

Bent Boolean functions are an important research topic in cryptography.  In 

particular, functions with many variables are of interest. If the number n of variables in a 

function increases by one, the function's length doubles. The number of Boolean 

functions grows “super-exponentially” as 22
n

. Due to the rapidly increasing number of 

Boolean functions, it quickly becomes impractical to simply test all Boolean functions 

and “sieve” out those that are bent or that have some other cryptographic property.  

Alternative methods for discovering bent functions have recently included binary 

decision trees [10] and genetic algorithms [11]. Another approach has been the use of the 

transeunt triangle on a TT to derive a function's algebraic normal form, which easily 

allows for determination of a function’s degree and homogeneity [12]. This approach 

allows eliminating a substantial number of Boolean functions from consideration, as it 

has been shown that there are no bent functions of degree m on 2m variables for m>3 

[13].  Circular pipelining is another method of searching for bent functions that has been 

shown to produce a speedup of 55 times at n=6 [14]. 
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E. THESIS OUTLINE 

The outline is as follows. Chapter I is the introduction, Chapter II is an 

explanation of bent functions, Chapter III is an explanation of the Fast Walsh Transform, 

a heuristic for identifying bent Boolean functions is developed in Chapter IV, some 

results and our analysis are displayed in Chapter V, and conclusions and 

recommendations are provided in Chapter VI. Appendix A contains code for the SRC-6, 

and Appendix B contains MATLAB code. 

 

 

 



 5

II. BENT BOOLEAN FUNCTIONS 

A. DEFINITIONS 

Let Vn be the vector space of dimension n over the two-element field F2: 

1{( ,..., ) | {0,1}}n n iV x x x   

1. Boolean Function 

A Boolean function f on n variables is a map from the n-dimensional vector 

space Vn = F to F2, the two element field. 

2. Truth Table (TT) 

A truth table ( fTT ) is the output table of the Boolean function f, where the input 

runs through the entire vector space in order. For example, the elements of the truth table 

are 0 (0,0,...,0)f f , 1 (0,0,...,1)f f ,..., 
2 1

(1,1,...,1)nf f

 . The truth table is defined by 

the sequence of bits 0 1 2 1
( ... )nfTT f f f


 . 

Example 2.1. The truth table of the AND of two variables is: 

 

x1 x2 f 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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This is the function that is formally written as 1 2 1 2( , )f x x x x . We denote this 

truth table by 0001fTT  . 

Example 2.2. The truth table of the OR of two variables is: 

 

x1 x2 f 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

This is the function that is formally written 1 2 1 2( , )f x x x x  . We denote this truth 

table by 0111fTT  . 

3. Term  

A term is the AND of variables or their complement. 

4. Weight 

The weight of a truth table is the number of 1’s in the truth table. For example, 

0111fTT  has a weight of 3 and  has a weight of 1.  

5. Hamming Distance 

The Hamming distance d(f,g) between two functions f and g is the number of 

places where their truth tables differ. It can also be interpreted as the Hamming weight of 

f gTT TT , that is, the sum of the ones in the result of a bit-wise Exclusive-Or of the truth 

tables of f and g. 
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Example 2.3. The Hamming distance between two functions f and g: 

:fTT    01010101 

:gTT   11001100 

:f gTT TT  10011001 

( , ) :d f g  4 

The Hamming distance is 4, as there are four bits where the truth tables of f and g 

differ.    

6.  Linear Function 

A linear function is the Exclusive-Or of single variables. For example, 

1 2 3 1 2( , , )f x x x x x  . 

7. Affine Function 

An affine function is a linear function or the complement of a linear function. For 

example, 1 2 3 1 2( , , ) 1f x x x x x   is an affine function. 

8. Nonlinearity 

The nonlinearity (NLf) of a function f is the minimum Hamming distance 

between f and all affine functions. An example where the function 1 2 3 4B x x x x   is 

tested against all affine functions for n=4 is given in Table 1. This function’s nonlinearity 

is six. 
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Table 1.   Computation of the Nonlinearity of 1 2 3 4B x x x x  (From [15]). 

 

 

9. Bent Function 

A bent function is a Boolean function that attains the upper bound on the 

nonlinearity (see next section), which happens only if n is even. 

 

B. CHARACTERISTICS 

1. Notation 

In this thesis, the number of variables in a function is referred to as n. If n = 4, the 

variables are listed as 4 3 2 1, , ,x x x x . There are 2n bits in the truth table with n variables. 

There are 22
n

 possible functions on n variables. 
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2. Nonlinearity of Bent Functions 

Rothaus [1] showed that bent functions have nonlinearity 
11 22 2

n
n   . Thus, for 

example, if 4n  , we know that a function f with 3fNL  is not bent. 

3. Number of Bent Functions 

The exact number of bent functions is only known for 8n   [16]. The known 

number of bent functions is shown in Table 2. The number of bent functions increases 

rapidly as n increases. In addition, the percentage of functions that are bent decreases as n 

increases. For example, for 4n  , 42

896 896
1.3%

65,5362
  of the functions are bent. By 

comparison, considering 6-variable functions, only 6

8

2

5,425,430,528
2.94 10 %

2
x  are 

bent.  The decrease in the proportion of functions that are bent and the rapid increase in 

total functions as n increases contribute to making bent functions very difficult to find. 

 

Table 2.   Number of Bent Functions on n Variables (From [12]). 

n Number of Bent Functions 

4 896 

6 5,425,430,528 

8 9.9x1031 

 

C. SIEVE METHOD FOR BENT FUNCTION DISCOVERY 

An approach to finding bent functions is to enumerate every truth table 

sequentially and compare each truth table to all affine functions simultaneously. A block 

diagram of this method is shown in Figure 1. The function being tested is XOR'd bitwise 

with each affine function. Each result is then routed to a “Ones Count” that determines 
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the Hamming distance between the function being tested and each affine function. 

Finally, the Hamming distances are routed to a “Minimum” circuit that determines the 

lowest value among the Hamming distances. The output of the “Minimum” circuit is the 

nonlinearity of the function being tested.  

This has been implemented on the SRC-6, producing the nonlinearity of one 

function per clock or 100,000,000 functions per second. Each module comprising the 

sieve method will be discussed further below. 

 

 

Figure 1.   Sieve Method Architecture for Bent Function Discovery (From [15]). 

1. Bitwise Exclusive-OR Operation 

The bitwise Exclusive-OR operation applies to each affine function. Each input is 

a bus with width 2n  bits. The corresponding bits of each input are applied to a 2-input 

XOR gate. The output of the XOR gates is a bus with width 2n  bits. This is shown in 

Figure 2. 
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Figure 2.   Bitwise Exclusive-OR Architecture (From [15]). 

2. Ones Count 

The Ones Count circuit is a logic tree starting with 
2

4

n

-input adders. The tree 

ends with an adder that produces a 1n  bit wide output. This output is the Hamming 

distance to the affine function that was input to the bitwise Exclusive-OR operation. This 

is shown in Figure 3. 

 

Figure 3.   Ones Count Architecture (From [15]). 
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3. Minimum 

The circuitry to find the minimum amongst all the Hamming distances is shown 

in Figure 4. This circuit is also a logic tree, with each minimum block taking two 1n  bit 

inputs and producing the smaller of the inputs as an 1n  bit output. The output of this 

module is the nonlinearity of the function being tested. This is shown in Figure 4. 

 

Figure 4.   Minimum Architecture (From [15]). 

4. Achievable Speed-Up 

Implementation of the sieve method on the SRC-6 has been shown to achieve 

significant speed-up over a PC [16]. The large number of operations occurring in parallel 

on the SRC-6 are executed in serial on a conventional computer. For example, a PC 

executes 12n  bitwise XOR operations for every affine function. The SRC-6 executes all 

of the bitwise XOR operations in parallel in one clock cycle. Speed-up factors attained 

with the SRC-6 are shown in Table 3. Of note is the fact that the speed-up factors actually 

increase as n increases. 
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Table 3.   Speed-Up Obtained by the SRC-6 Reconfigurable Computer (From [16]). 

 

 

5. Limitations  

It is clear from Table 3 that an exhaustive computation of the nonlinearity of all 

functions where 6n  is not feasible, despite the speedup offered by using the SRC-6. 

This paper discusses an alternative method of computing the nonlinearity of a Boolean 

function, the Fast Walsh Transform (FWT). The FWT and an implementation of the 

FWT on the SRC-6 that finds the nonlinearity of all functions for a given number of 

variables are discussed in the next chapter. A heuristic method for converging on a bent 

function given a function that is not bent is discussed in Chapter IV. The method uses the 

FWT to determine how to converge.  

 



 14

THIS PAGE INTENTIONALLY LEFT BLANK 



 15

III. FAST WALSH TRANSFORM 

A. INTRODUCTION 

Walsh-Hadamard transforms (WHTs) are recursively computed 2n by 2n matrices 

that are multiplied by a vector. For n = 0, the WHT matrix is defined to be WHT0 = 1. 

For greater n, the WHT matrix is defined as [17]: 

 1 1

1 1

1

2
n n

n
n n

WHT WHT
WHT

WHT WHT
 

 

 
   

 (1) 

The factor preceding the matrix is a normalization factor. This factor is often 

omitted. This matrix is then multiplied by a vector containing the TT of a function to 

compute the WHT. 

The fast Walsh transform (FWT) is an efficient method for computing a WHT. 

The WHT has a computational complexity of n2. The FWT, on the other hand, has a 

computational complexity of n log(n). This is a significant reduction in the amount of 

required computations [9].  

B. COMPUTATION 

The FWT is a relatively simple computation. Given a valid TT, pairs of digits 

from the TT are coupled and modified by an “in-place butterfly” module. Here, the term 

“in-place” means that the values produced by the butterfly module output are placed in 

the same position from which the butterfly module inputs came. For inputs a and b, the 

outputs of the butterfly module will be a+b and a-b, respectively. An example of the 

butterfly module is shown in Figure 5. 
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Figure 5.   Example of In-Place Butterfly Module. 

The first set of butterfly modules pairs adjacent elements and produces a 2n  

element array. This process is repeated a second time, pairing every other element in the 

first array to produce a second array. The third iteration will pair every fourth element in 

the second array, and so on. A complete computation of the FWT of a TT with 3n   is 

shown in Figure 6. 

 

Figure 6.   Example of a Computation of Fast Walsh Transform. 
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C. FWT COEFFICIENT RANGES 

An interesting and important observation is the value of the first element of the 

FWT, which shall be referred to as FWT0. The value of FWT0 is equal to the weight of 

the input TT, which is the number of ones contained in the input TT. This is always true, 

since the first element of the iterations of the FWT computation always receives the left 

portion of the butterfly ( )a b .  Therefore, its output is the sum of all bits in the TT and 

FWT0 has a range of values from zero to 2n . 

The other elements of the FWT also have a range that is dependent on n. As n 

increases, computation of the FWT requires more iterations. Each iteration produces 

another array and expands the range of each element in the array. For example, the TT 

elements only have range from 0 to 1. The first array of the FWT computation will have a 

maximum value of 2 and a minimum value of 1 . The second array of the FWT 

computation will have a maximum value of 4 and a minimum value of 3 . The third 

array (which is the FWT in the example shown in Figure 6) will have a maximum value 

of 8 and a minimum value of 7 . Generalizing this pattern, the FWT result will be the 

nth array and the gth array will have a maximum value of 2g  and a minimum value of 

(2 1)g  .  

D. EXPECTED AND UNEXPECTED DISTANCE  

Consider an example function f with 10011100fTT   where 3n  . Since there 

are 8 bits in the TT of f and each bit is assumed to have an equal probability of being 

either a one or a zero, we can expect that the average Hamming distance between f and 

any other function with 3n   to be equal to half the number of bits in the TT. This value 

is referred to as the expected distance [9] to f and in this example is 
2

4
2

n

 . 

Now let us consider an affine function with 3n  , namely, with the truth table 

01100110gTT  . Computing the Hamming distance gives ( , ) 6d f g  .  The difference 

between this Hamming distance and the expected difference is 2 and is referred to as the 

unexpected distance [9]. The greater the magnitude of the unexpected difference, the 
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more bent the function is. The Hamming distances and unexpected differences between 

all of the affine functions and function f are displayed below in Table 4. 

Table 4.   Unexpected Differences of Linear Functions From Example Function. 

Linear Function Truth Table Hamming 

Distance 

Unexpected 

Distance 

1 11111111 4 0 

1x  01010101 4 0 

2x  00110011 6 +2 

2 1x x  01100110 6 +2 

3x  00001111 4 0 

3 1x x  01011010 4 0 

3 2x x  00111100 2 2  

3 2 1x x x   01101001 6 +2 

Example Function Truth Table 

f 10011100 

 

The complements of the linear functions in Table 4 are comprise the remainder of 

the affine functions and are shown in Table 5. Note that the unexpected differences of the 

functions in Table 5 are the negatives of those in Table 4. Therefore, it becomes 

unnecessary to consider the complements of the affine functions. 
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Table 5.   Unexpected Differences of the Complements of Affine Functions From 
Example Function. 

Complements of Linear Functions Truth Table Hamming Distance Unexpected 

Distance 

0 00000000 4 0 

1 1x   10101010 4 0 

2 1x   11001100 2 2  

2 1 1x x   10011001 2 2  

3 1x   11110000 4 0 

3 1 1x x   10100101 4 0 

3 2 1x x   11000011 6 +2 

3 2 1 1x x x    10010110 2 2  

Example Function Truth Table 

f 10011100 

 

E. BOOLEAN FUNCTION NONLINEARITY  

Consider the example function f with 10011100fTT  . This function’s FWT was 

computed as the example in Figure 6 and was shown to be 

4 0 2 2 0 0 2 2fFWT   . Recalling that FWT0 is equal to the number of ones 

in the TT, we now note that the remaining digits of the FWT correspond exactly to the 

magnitude and sign of the unexpected differences shown in Table 4. Thus, the FWT is an 

easy way to quickly compute the unexpected difference between a function and every 

affine function. 
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From the FWT it is relatively simple to determine the nonlinearity of the function. 

The first step is to add 2
2

n
 to every element of the FWT except FWT0. This gives an 

array of nonlinearities for both the affine functions and complements of affine functions. 

Recall from Table 1 that when a function has a Hamming Distance of d from an affine 

function, then that function has a Hamming Distance of 2n d from the complement of 

that affine function. Since the nonlinearity of a function is found using only the smallest 

of the Hamming Distances, we apply a conditional statement to each element of the array 

of nonlinearities. If an element is greater than 2
2

n
, then we subtract the nonlinearity 

from 2n to get the smaller nonlinearity. If an element is less than or equal to 2
2

n
, then no 

adjustment is needed. Finally, the nonlinearity of the function is the smallest of all 

adjusted elements. This process is demonstrated in Figure 7.  

 

 

Figure 7.   Example of a Computation of Nonlinearity From Fast Walsh Transform. 
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IV. ALGORITHM FOR BENT FUNCTION DISCOVERY 

A. INTRODUCTION 

Previous methods of bent function discovery, such as the sieve method described 

in Chapter I, focused on exhaustive enumeration of all Boolean functions. Other studies 

have attempted to overcome the difficulty in exhaustive enumeration by focusing on a 

specific subset of Boolean functions [12]. By contrast, it was a primary objective of this 

thesis to explore the possibility of identifying bent functions via modification of a TT that 

was not bent using information from its FWT. Such a process would take the TT of a 

non-bent function and produce a “nearby” function with a greater nonlinearity. For this 

thesis, a “nearby” function will be defined as a function with a Hamming distance of one 

from the original one. Due to the ease in computation and better demonstrability, this 

thesis will consider this objective using the n = 4 case. 

B. INCREASING NONLINEARITY 

When the nonlinearity of a function is low, finding a nearby function with higher 

nonlinearity is a relatively easy task. Taking any affine function and changing any single 

bit of its TT will give a new function with a nonlinearity of one. There are (16,1) 16C   

ways to change one bit, and with 32 affine functions, this gives (16)(32) = 512 functions. 

As shown in Figure 8, there are 512 functions with nonlinearity of one. 

 Now consider the case where one modifies any two bits of an affine function’s 

TT. There are (16,2) 120C   ways to change two bits of an affine function’s TT. Since 

there are 32 affine functions, there should be (120)(32) = 3840 functions with 

nonlinearity of two. The existence of 3,840 unique functions with nonlinearity of two is 

confirmed in Figure 8. Thus, changing any two bits of an affine function increases 

nonlinearity by two. 

One can go further and consider the case where any three bits of an affine 

function’s TT are modified. Here there are (16,3) 560C   ways to change three bits of an 

affine function’s TT. This implies there should be (560)(32) = 17,920 functions with 
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nonlinearity of 3. The existence of 17,920 unique functions with nonlinearity of three is 

also confirmed in Figure 8. Thus, changing any three bits of an affine function increases 

nonlinearity by three. 

Note that this pattern does not hold when considering the number of functions 

with nonlinearity of four. This is because when a nonlinearity of four has been reached, 

there will be a great number of functions that would be “double counted.” For example, 

consider the affine function 0f  and the affine function 1g x . These functions have 

TTs of 0000000000000000fTT   and 0101010101010101gTT  , respectively. It is 

possible to alter four different bits in each truth table and end up with the same function 

with 0101010100000000hTT  . Function h has a nonlinearity of four. 

An interesting observation was made about functions with nonlinearity of five. 

Note that there are exactly 16 times as many functions with nonlinearity of five as there 

are bent functions. Exhaustive testing for four-variable functions showed that for every 

function with nonlinearity of five, there was exactly one bit that when complemented 

yielded a bent function. A change in any other bit would yield a function with 

nonlinearity of four, however. This fact demonstrates that it is no longer trivial to find 

nearby functions with higher nonlinearity when a function is nearly bent.  
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Figure 8.   Distribution of Nonlinearity for Boolean Functions With n = 4 (From [18]). 

Another distribution of four-variable functions is shown in Figure 9. This 

distribution is broken down by nonlinearity and weight. This figure nicely illustrates the 

ease of increasing the nonlinearity of functions that are nearly affine and the difficulty of 

increasing the nonlinearity of functions that are nearly bent.  

An interesting observation that can be made from Figure 9 is that complementing 

any bit of any function’s truth table will produce a function with a different nonlinearity, 

either higher or lower. For instance, consider the functions with a nonlinearity of three 

and a weight of three. Complementing any bit of such a function produces a function with 

a weight of either two or four. This will always produce a function with a nonlinearity of 

two or a nonlinearity of four, because there are no functions of nonlinearity three with a 

weight of two or four. This pattern holds for all functions of any nonlinearity or weight.  
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Consider a function with a nonlinearity of two and weight of two. It is trivial to 

find a nearby function with increased nonlinearity. Complementing any 0 bit in this 

function’s truth table will produce a function with nonlinearity of three and weight of 

three. Note that it is impossible to do this and receive a function with lower nonlinearity, 

since there are no functions with a nonlinearity of one and weight of three for n = 4. 

Now consider a function with a nonlinearity of five and weight of five. As shown 

by Figure 9, there are 2,688 such functions. In order to have a bent function, the weight 

must be increased by one since all bent functions have weight of six or ten. However, 

increasing the weight is far more likely to actually decrease the nonlinearity. Note that for 

a weight of six, there are exactly fifteen times more functions with nonlinearity of four 

(6,720) than there are with nonlinearity of six (448).  

 

Figure 9.   Distribution of Four-Variable Functions Over Nonlinearity and Weight 
(From [18]).  
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This may not seem particularly problematic, as using a trial-and-error method to 

determine which bit to change to go from a nonlinearity of five to a nonlinearity of six 

will take at most 16 attempts. However, the amount of potential attempts grows 

exponentially as n increases, as there are 2n bits in a TT. In addition, each attempt entails 

a computation of a function’s nonlinearity in order to determine if the trial was successful 

or not. Recall that using the sieve method to compute the nonlinearity may take many 

clock cycles, and using the FWT to compute the nonlinearity takes multiple clock cycles 

as well. In addition, as n increases, the number of clock cycles required to compute the 

nonlinearity via the sieve method or by the FWT increases as well. Clearly, a trial-and-

error method to produce a bent function is not a fast process. 

In order to reduce the number of amount of time needed to find a nearby function 

with higher nonlinearity, we will use characteristics of the FWT to immediately eliminate 

many potential bit changes and greatly speed up discovery of bent functions. 

C. FWT SPECTRUM CHARACTERISTICS 

An exhaustive examination of the FWTs of Boolean functions with 4n   

revealed interesting information about the composition of FWTs. For each nonlinearity, a 

FWT always consisted of a specific set of values (except for the FWT0 term, which is 

simply the function’s weight). The FWT of a bent function with nonlinearity of six 

always consisted only of values of 2 and 2 . The FWT of a function with nonlinearity of 

five always consisted only of values contained in the set { 3 , 1 ,1,3}. Likewise, the 

FWT of a function with nonlinearity of four always consisted only of values contained in 

the set { 4 , 2 ,0,2,4}. FWTs for functions with nonlinearities of three, two, one, and 

zero all have specific sets of values as well. These observations are shown in Table 6. 

The placement of these values throughout the FWT varies with the function being 

considered, but the values present in the FWT are affected only by the function’s 

nonlinearity. This trait was also noted in limited observation of functions with n = 6, but 

due to our inability to exhaustively test the FWTs of these functions, this thesis will focus 

on the n = 4 case.  
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Table 6.   Possible Values Contained in FWT Elements for Various Nonlinearities for 
n = 4. 

Nonlinearity Possible Values Contained in FWT Elements (Except FWT0) 

6 2 , 2 

5 3 , 1 , 1, 3 

4 4 , 2 , 0, 2, 4 

3 5 , 3 , 1 , 1, 3, 5 

2 6 , 2 , 0, 2, 6 

1 7 , 1 , 1, 7 

0 8 , 0, 8 

 

D. EFFECT OF TRUTH TABLE CHANGES ON FWT 

It has already been established that changing a 0 bit to a 1 bit in a given TT 

increments the value of FWT0 by one. An interesting question was whether or not the 

values of the other elements of the FWT could also be predictably altered by a change in 

the function’s TT. It was discovered that one can indeed predict the change in any 

element of a FWT caused by a change in the function’s TT.   

Exhaustive testing showed the derivation of the values shown in Figure 10 and 

Figure 11. The effects on each element of the FWT due to a 0 to 1 transition in any TT 

element and due to a 1 to 0 transition in any TT element, respectively, are shown. For 

example, if one were to change TT5 from a zero to a one, FWT0 will increase by one, 

FWT1 will decrease by one, FWT2 will increase by one, and so on.  If one were to change 

TT6 from a 1 to a 0, FWT0 will decrease by one, FWT1 will decrease by one, FWT2 will 

increase by one, FWT3 would increase by one, and so on. 
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It is noteworthy that the values contained in Figure 10 are exactly equivalent to 

the Walsh-Hadamard Transform matrix WHT5, where 1 1

1 1

n n
n

n n

WHT WHT
WHT

WHT WHT
 

 

 
   

 and 

WHT1 = 1. The values contained in Figure 11 are the negatives of these values. 

 

 

Figure 10.   Changes in Values of FWT Elements Caused by a 0 to 1 Transition in a 
Function’s TT. 
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Figure 11.   Changes in Values of FWT Elements Caused by a 1 to 0 Transition in a 
Function’s TT. 

E. ALGORITHM FOR FINDING BENT FUNCTION GIVEN NEARLY BENT 
FUNCTION 

1. Nonlinearity Five to Nonlinearity Six 

Consider a four-variable function f with the following TT: 

TTf =  0  0  0  1  0  1  0  1  0  0  0  1  1  1  1  0 

The function f has a nonlinearity of five and its FWT is: 

FWT = 7 3  1   1 3  1  3   3 1  3  1   1  1  3  1 1  

As previously discussed, a change in exactly one bit of the TT of f will result in a 

bent function. For a four-variable function, there are 16 bits in the TT that could 

potentially be changed. However, it is known that four-variable bent functions all have 

weight of six or ten. Since f has a weight of seven, we know that a 1 in its TT must be 

complemented to produce a bent function. Thus, the number of bits that could potentially 

be changed in order to produce a bent function is seven. This significantly reduces the  
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number of bits that would potentially need to be tested in a trial-and-error technique. 

However, for functions with higher values of n, this can still result in a large number of 

bits to be tested.  

A method for reducing the number of bits even further is to consider the contents 

of the FWT of f. Note that the FWT (except FWT0) contains values 3 , 1 , 1, and 3. 

This is the set of values that are potentially present in the FWT of a function with 

nonlinearity of five. Recall that a bent function’s FWT will only contain values 2  and 2 

and a function with nonlinearity of four will potentially have values 4 , 2 , 0, 2, and 4. 

If the incorrect TT bit is chosen to be complemented, then one or more of the FWT 

components with values 3 or 3 will become 4 or 4, respectively. This would produce a 

function with a lower nonlinearity. For example, consider if we (incorrectly) choose to 

complement the first 1 bit in the TT. This bit is referred to as TT3 in Figures 10 and 11. 

From Figure 11, it can be seen that changing TT3 from a 1 to a 0 will decrease the value 

of FWT4 by one and will increase the value of FWT13 by one. This would make FWT4 

equal to 4 and FWT13 equal to 4. This indicates a function with a nonlinearity of four 

without having to recalculate the nonlinearity of the new function that was produced. The 

TT and FWT resulting from this incorrect transition are: 

 Tg = 0  0  0  0  0  1  0  1  0  0  0  1  1  1  1  0 (2) 

and 

 WT = 6 2   0  0 4   0 2   2 2  2   0  0  0  4  2 2 . (3) 

As another example, consider if we (correctly) choose to complement TT5. Doing 

so will cause all FWT values that had been 3 to become 2 and all FWT values that had 

been 3 to become 2. This produces a bent function with nonlinearity of six. The TT and 

FWT resulting from this correct transition are:  

 Th =  0  0  1  0  0  0  1  0  0  0  1  1  1  1  0 (4) 

and 

 WT = 6 2  2   2 2  2  2   2 2  2  2  2   2  2  2 2 . (5) 

 



 30

A flowchart that describes this algorithm is shown in Figure 12.  

 

Figure 12.   Algorithm for Finding Bent Function Given Four-Variable Function With 
Nonlinearity of Five. 
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2. Nonlinearity Four to Nonlinearity Five 

The algorithm for altering a function with nonlinearity four to produce a function 

with nonlinearity five is quite similar to the algorithm just described. The major 

difference in this case is that for functions with certain weights we are not forced to 

complement a 1 or complement a 0. For example, a function with weight of four must 

have its weight increased by one by complementing a 0 bit. Conversely, a function with 

weight of twelve must have its weight decreased by one by complementing a 1 bit. For 

functions with weight of six, eight, or ten, we can either decrease or increase the weight 

to produce a function with nonlinearity of five.   

Consider a function f with nonlinearity of four and the following TT and FWT: 

 Tf =  0  0  0  1  0  0  1  0  0  0  1  1  1  1  0; (6) 

 WT = 6  0  0  2 4 2 2  0 2  0  0  2  0  2  2 4 . (7) 

Note that the FWT of this function contains the proper values for a function with 

nonlinearity of four. In order to produce a function with nonlinearity of five, a TT 

transition that forces both of the FWT values of 4 to become 3 is necessary. Because 

the function has weight of six, we can either complement a 0 bit or a 1 bit. Arbitrarily 

choosing to complement a 0 bit, we see from Figure 11 that complementing TT0 

increases both FWT5 and FWT15 (and actually, changing TT0 from 0 to 1 will increase 

every element of the FWT). Choosing to complement this bit produces a function g of 

nonlinearity five with the following TT and FWT: 

 Tg = 1  0  0  0  1  0  0  1  0  0  0  1  1  1  1  0; (8) 

 WT = 7  1  1  3 3  1  1   1 1   1  1  3  1  3  3 3 . (9) 

A flowchart that describes this algorithm is shown in Figure 13. The output of this 

algorithm could then be the input to the algorithm shown in Figure 12, which would 

produce a bent function. 

The algorithm for altering any function with nonlinearity of less than four in order 

to produce a function with greater nonlinearity is similar to this algorithm. 
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Figure 13.   Algorithm for Finding a Function With Nonlinearity of Five Given a Four-
Variable Function With Nonlinearity of Four. 
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V. COMPUTATION AND ANALYSIS 

A. IMPLEMENTATION OF FWT ON SRC-6 

1. About the SRC-6 

The SRC-6 reconfigurable computer in Spanagel Hall at the Naval Postgraduate 

School is the one of the computational tools used for this thesis. The SRC-6 allows the 

user greater flexibility to control compilation than a PC. It is composed of two PCs, each 

with a Pentium IV microprocessor, five Multi-Adaptive Processing (MAP) boards each 

containing three Xilinx Virtex-2 XC2V6000 FPGAs, two for computing and one for 

control as well, as well as 24 MB of On Board Memory (OBM). A high-bar switch 

connects these components. These boards are connected by a high-bar switch. The SRC-6 

has four 8 GB banks of common memory. The SNAP port can send data from the 

microprocessor to the MAP at a maximum speed of 1400 MB/s. A diagram of the SRC-6 

is shown in Figure 14. 

 

 

Figure 14.   Layout of the SRC-6 (From [15]). 
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Several files are required to execute a program on the SRC-6. The SRC-6 can 

compile code that can be either executed on the Intel processor or on the MAP. The files 

are linked together in order to create a single executable. Files that are Intel targeted are 

compiled to an .o file and files that are targeted to the MAP compile using the Map C 

Compiler (MCC). The file main.c is written in C and calls a subroutine file which does 

the bulk of the computation. The file main.c  is typically used to format and display the 

output and sends inputs to the subroutine. The file subr.mc is the subroutine that main.c 

calls. It is also written in C and runs on the MAP. The subroutine subr.mc can call built-

in or user-created macros. Local memory and On Board Memory (OBM) are used for 

data storage. The SRC-6 contains six OBM banks. Each OBM bank is capable of storing 

523,776 64-bit words. The SRC-6 FPGA contains 144 Block RAM (BRAM) units. Each 

BRAM unit is capable of storing 2048 bytes. BRAM units can conduct a read and a write 

simultaneously. 

The user can define macros on the SRC-6. Macros are written using VERILOG or 

VHDL and define the circuits generated on the FPGA. The macro is the module that 

performs the desired computations, and it can be called millions of times by the 

subroutine. Users can pipeline the macro so that it can perform one computation each 

clock cycle. This significantly boosts throughput when compared to a PC. This is usually 

where the major computations occur. The macro can be called millions of times in the 

subroutine. It can be pipelined to increase throughput, a major advantage over a PC. 

Macros require several files to operate: a blk.v file that acts as a black box and specifies 

inputs and outputs of the macro and an info file that describes the characteristics of the 

inputs and outputs as well as the characteristics of the macro. 

2. Use of the SRC-6 

It was exceptionally useful utilizing the SRC-6 for computing the nonlinearity of 

millions of functions. The subroutine used a counter in order to exhaustively test all 

functions for a given n. Each function generated by the counter was sent to the macro as 

an input to be tested. The function was tested for its nonlinearity by utilizing its FWT. 
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The values of functions’ nonlinearities were sent back to the subroutine and stored in a 

histogram. The histogram counted the number of functions with each nonlinearity.  

In addition to exhaustively computing the nonlinearities of functions by using the 

FWT, the nonlinearities were also computed separately by an implementation of the sieve 

technique. This was done so as to obtain a comparison against a benchmark in order to 

ascertain the feasibility of computing the FWT on the SRC-6.  

3. Limitations of the SRC-6 

The primary limitation of the SRC-6 is the speed of its FPGA. The SRC-6 runs at 

100 MHz, so a limit of 100,000,000 functions can be tested each second. Due to this, it is 

impractical to exhaustively test all function with more than five variables. Computing the 

nonlinearity of every six variable function, for example, would take about 
62

112
1.85 10 sec 5,845

100

functions
x years

MHz
  . Due to this limitation, only limited numbers 

of computations were performed for six-variable functions.  

Another limitation of the SRC-6 is the inability to compile designs that require 

more than 10 ns between clock cycles. This can occur when a program requires extensive 

computations or it is written inefficiently. This can be encountered sometimes in Verilog 

while using behavioral code. Behavioral code involves the use of loops, conditionals, and 

calls to functions. A more efficient method of coding on the FPGA is to use structural 

code. Structural code involves the use of wire connections that perform simple operations 

synchronized with the edge of a clock pulse or the change of an input quantity. Structural 

code includes the use of registers, which can be used to store and recall information on a 

clock pulse. This allows pipelining code, which can significantly lower the time between 

cycles and allow a program to compile properly.  

A final limitation of the SRC-6 is that its FPGA has a limited amount of space 

available for hardware design.  With more variables in a function, the larger the circuit 

required to compute its nonlinearity becomes. As n increases to approximately nine or 

ten, the FPGA’s resources are no longer sufficient to construct the specified circuit. It is 
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conceivable to use a second FPGA to add the required resources to construct circuits for 

high values of n, but this has not been explored.  

B. RESULTS AND ANALYSIS OF IMPLEMENTATION OF FWT ON THE 
SRC-6 

1. Nonlinearity for n = 4 

For the 216 four-variable functions, the nonlinearities were computed for each of 

these using the FWT method, a pipelined FWT method, as well as the sieve method for a 

comparison. A summary of the relevant performance metric is shown in Table 7. All 

methods were able to be compiled on the SRC-6, as their frequencies were all greater 

than 100 MHz. The methods, as expected for a small value of n, all use a similarly small 

amount of the FPGA’s resources. It is of note that the pipelined FWT method executes 

most quickly, with a frequency of 110 MHz. The distribution of nonlinearities obtained 

with the FWT methods is shown in Figure 15 and precisely matches the distribution 

shown in Figure 9, confirming that the FWT method correctly computed the nonlinearity 

for all functions. 

Table 7.   Comparison of Methods for n = 4.   

 Sieve Method FWT Method Pipelined FWT 

# Clock Cycles 65,727 65,737 65,737 

Latency (clock 

cycles) 

6 16 18 

# LUTs Used (%) 3,717 (4%) 3,923 (4%) 4,012 (4%) 

Frequency (MHz) 101.0 100.2 110.0 
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Figure 15.   Distribution of Functions With Four Variables by Nonlinearity. 

2. Nonlinearity for n = 5 

For the 232 five-variable functions, the nonlinearities were computed for each 

using the FWT method, a pipelined FWT method, as well as the sieve method for a 

comparison. A summary of the relevant performance metric is shown in Table 8. The 

sieve method and the pipelined FWT were able to be compiled and run on the SRC-6, as 

their frequencies were greater than 100 MHz. Note that in this case, the sieve method 

runs faster than the pipelined FWT. In addition, the latency of the pipelined FWT is much 

higher than the latency of the sieve method. This is conjectured to be due to the circuit 

having exponential complexity in n, where complexity is shown by the number of LUTs 

used. The distribution of nonlinearities for n = 5 is shown in Figure 16. Approximately 

0.64% of the functions have maximum nonlinearity, which is about half of the proportion 

of bent functions that exist for n = 4. 
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Table 8.   Comparison of Methods for n = 5.  

 Sieve Method FWT Method Pipelined FWT 

# Clock Cycles 4,294,967,488 4,294,967,513 4,294,967,513 

Latency (clock 

cycles) 

7 32 34 

# LUTs Used (%) 3969 (4%) 5,134 (5%) 5,511 (6%) 

Frequency (MHz) 111.8 78.6 100.0 

 
 

 

Figure 16.   Distribution of Functions With Five Variables by Nonlinearity. 

3. Nonlinearity for n = 6 

Since it was not possible to compute the nonlinearities of all 264 functions with six 

variables, we rather computed the nonlinearity for a subset of 232  of them. For these 

functions, the nonlinearities were computed for each using the FWT method, a pipelined 

FWT method, as well as the sieve method for a comparison. A summary of the relevant 
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performance metric is shown in Table 9. The sieve method and the pipelined FWT were 

able to be compiled and run on the SRC-6, as their frequencies were greater than 100 

MHz. The non-pipelined FWT method suffered a sharp drop-off in frequency. In 

addition, the latency of the pipelined FWT is much higher than the latency of the sieve 

method and seems to be growing exponentially. 

Table 9.   Comparison of Methods for n = 6. 

 Sieve Method FWT Method Pipelined FWT 

# Clock Cycles 4,294,967,489 4,294,967,545 4,294,967,545 

Latency (clock 

cycles) 

8 64 67 

# LUTs Used (%) 4,486 (5%) 8,615 (9%) 9,269 (10%) 

Frequency (MHz) 102.1 48.3 100.1 

 

4. Trends of Performance Metrics 

The trends of the frequency and resource usage for the nonlinearity computation 

methods are shown for increasing n in Figure 17. It becomes clear that the FWT method, 

without pipelining, will not compile for n greater than five. A pipelined version of the 

FWT method, however, performs much better. The pipelined FWT method and the sieve 

method share roughly equivalent execution frequencies up to about an n of ten.  
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Figure 17.   Trend of Frequency for Nonlinearity Computation Methods for Various n. 

The total number of four-input Lookup Tables (LUTs) used is shown in Figure 

18. A LUT is the key type of data structure used in FPGAs. An n-bit LUT can encode any 

n-bit Boolean function by modeling it as a truth table. LUTs are, therefore, a very 

efficient method for encoding Boolean logic functions. 

One aspect where the FWT method is decidedly less desirable than the sieve 

method is in the amount of resources it used. The number of LUTs used by the sieve 

method increased almost linearly with n. The number of LUTs used by the FWT method, 

on the other hand, increased roughly exponentially with n. The FPGA in the SRC-6 

contains 88,192 four-input LUTs. The amount of resources available on the SRC-6 would 

allow use of the SRC-6 method for n up to nine. It would be conceivable to use a second 

FPGA for higher n, but this has not been attempted.  
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Figure 18.   Trend of Resource Utilization for Nonlinearity Computation Methods for 
Various n. 

C. IMPLEMENTATION OF ALGORITHM ON PC USING MATLAB 

MATLAB was used to write code to implement the algorithm described in 

Chapter IV. This algorithm was used for the n = 4 case, but can be expanded for use with 

higher n. The algorithm takes a TT and n as inputs and returns the TT of a nearby 

function with higher nonlinearity if one exists. The range of input TT accepted in this 

implementation was limited to those with a nonlinearity of three or greater. This is 

because of the ease in finding functions with nonlinearity four or greater, as discussed in 

Chapter IV.  

This algorithm was performed on all functions with a nonlinearity of three, four, 

five, and six. It always chose a bit that, when complemented, produced a nearby function 

with greater nonlinearity if such a function existed.  An example of the output from this 

implementation is shown in Figure 19.  
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Figure 19.   Sample Output of Algorithm That Discovers Nearby Bent Functions. 

The algorithm was applied to every four-variable function. Input functions with 

nonlinearity less than three were ignored. The inputs were filtered so that the algorithm 

was performed separately on functions with starting nonlinearities of three, four, and five.  

For example, the algorithm was applied to all 17,920 functions with a nonlinearity 

of three. This produced a certain number of functions with a nonlinearity of four, on 

which the algorithm was applied again. This produced a certain number of functions with 

a nonlinearity of five, on which the algorithm was applied again. This produced a certain 

number of bent functions.  

After this, the algorithm was applied to all 28,000 functions with a nonlinearity of 

four. This produced a certain number of functions with a nonlinearity of five on which 

the algorithm was applied once more. This then produced bent functions. 
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Finally, the algorithm was applied to all 14,336 functions with a nonlinearity of 

five. This produced bent functions after the first iteration.  

The results for each starting nonlinearity are shown in Table 10. 

Table 10.   Summary of Algorithm Results for n = 4.  

Input Function 

Nonlinearity 

NL = 3 NL = 4 NL = 5 

Functions Tested 17,920 28,000 14,336 

Successes 17,920 26,880 14,336 

Failures 0 1,120 0 

Unique Higher 

Nonlinearity 

Functions Produced 

   

NL = 4 11,900 N/A N/A 

NL = 5 6,107 11,103 N/A 

NL = 6 676 896 896 

Input functions with a nonlinearity of five always produced a bent function. In 

addition, every unique bent function was produced this way. This result was encouraging 

and suggested that not every function with a nonlinearity of five needs to be found to find 

every bent function. 

Input functions with a nonlinearity of four did not always produce a function with 

higher nonlinearity. It was discovered that there are certain functions where one cannot 

find a nearby function with higher nonlinearity. For example, the function with 

1111000000000000fTT  has a nonlinearity of four and weight of four. By inspection of 
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Figure 9, we know that complementing a 1 bit from its TT will decrease its weight and 

nonlinearity to three. However, it turns out that complementing any of its 0 bits will 

produce a function with a weight of five and a nonlinearity of three.  

There were 1,120 input functions with a nonlinearity of four for which it was not 

possible to find a nearby function with nonlinearity of five. Every other input function 

with a nonlinearity of four, however, produced a nearby function with a nonlinearity of 

five. This produced a total of 11,103 unique functions with a nonlinearity of five. From 

those unique functions, the algorithm was then able to find all 896 bent functions. It is 

particularly noteworthy that not all functions with a nonlinearity of five need to be 

discovered in order to discover all the bent functions. 

Input functions with a nonlinearity of three always produced a function with a 

nonlinearity of four. This produced a total of 11,900 unique functions with a nonlinearity 

of four. From the functions produced that had a nonlinearity of four, the algorithm was 

able to produce 6,107 unique functions with a nonlinearity of five. From these functions, 

676 unique bent functions were produced.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

An SRC-6 implementation of the FWT method for computing the nonlinearity of 

all functions of a given n was accomplished in this thesis. This method had an execution 

frequency that was comparable with the method by which the Hamming distance from 

each affine function is computed and the minimum Hamming distance is taken.  As with 

other methods that exhaustively compute the nonlinearity of functions in order to 

discover bent functions, the feasibility of this method was limited by the number of 

variables in the input functions. The FWT method requires more 4-input LUTs than are 

available one FPGA on the SRC-6 once n ≥ 10.   

An algorithm that uses information from the FWT of an input function to produce 

a “nearby” function with higher linearity was also accomplished in this thesis. When a 

nearby function with higher nonlinearity exists, the algorithm always is able to find it. 

Instead of having to compute the nonlinearity of 22
n

functions in order to find every bent 

function, it was possible to apply the algorithm to a smaller set of functions and find 

every bent function. For example, for n = 4 there are 28,000 functions with a nonlinearity 

of four. This represents only 43% of all four-variable functions. From this smaller set of 

functions the algorithm was able to produce every bent function.  

Included in the Appendices are several sets of code that may aid those who chose 

to continue this research in the future. 

B. RECOMMENDATIONS 

There are several ideas that may improve or expand upon the work done in this 

thesis. There are several options available that may enhance the effectiveness of the SRC-

6. The SRC-6 contains two programmable FPGAs on each MAP. Only one FPGA was 

used in the implementation of the code in this thesis. Using the second FPGA may allow 

the computation of nonlinearities of functions with n ≥ 10. A potential pitfall is that only 

one 64-bit value can be passed to and from an FPGA at a time. The TT of a 12-variable 
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function contains 4096 bits, thus it would be necessary to pass 64 different 64-bit values 

between FPGAs to send the TT to the second FPGA. Since the FWT contains values 

other than 1 and 0, it contains many more bits than the TT. This would be even more 

difficult to pass between two FPGAs. This could potentially slow pipelining of the FWT 

method substantially.  

Another idea that may provide useful results would be to use the algorithm 

developed in this thesis in conjunction with previous research. Specifically, Shafer’s 

work  that identified groups of Boolean functions that were rich in bent functions [12]. It 

was demonstrated in this thesis that it is possible to find all bent functions by using a 

subset of all functions. It may be possible to find all bent functions for higher n by 

adapting the algorithm for higher n and applying it to certain sets of functions with 

specific degree, rotational symmetry, homogeneity, or other criteria.  
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APPENDIX A.  SRC-6 CODE 

The following is the code used to determine the nonlinearity of Boolean functions 

on the SRC-6. There are six major files required to run code on the SRC-6. They are 

Makefile, main.c, subr.mc, info, blk.v, and the macro file. For the sieve method code, the 

macro file is called nonlin.v. For the FWT code, the macro file is called FWTNL.v. 

A1. COMPUTATION OF NONLINEARITY USING SIEVE METHOD FOR 
N=4 

1. main.c 

/***************************************************************************/ 
/*                                                                         */ 
/*  main.c  -    C program to test an SRC-6E implementation of Ones_Count  */ 
/*                                                                         */ 
/*       Author:         Jon T. Butler                                     */ 
/*       Created:        November 25, 2007                                 */ 
/*             */ 
/*             */ 
/*  Modifed by:  Timothy O'Dowd     */ 
/*       Last modified:  October 19, 2010                                  */ 
/*                                                                         */ 
/*       Description:  This program calls an SRC-6 subrouting to compute   */ 
/*         the nonlinearity an n-variable function. It computes a histo-   */ 
/*         gram of the nonlinearities over all n-variable functions.       */ 
/*         It can do this for 1 <= n <= 5.  n=6 takes 11,000 years.        */ 
/*                                                                         */ 
/*                                                                         */ 
/***************************************************************************/ 
 
 
#include <map.h> 
#include <stdlib.h> 
 
void subr (int64_t*, int64_t*, int ); 
 
int main (int argc, char *argv[]) { 
        int mapnum = 0; 
        int64_t i, n = 4; 
        int64_t time_clk; 
        int64_t *hist; 
 
// Allocate array of hist values. 
    hist = (int64_t *) malloc (64*sizeof (int64_t)); 
 
    map_allocate (1); 
 
//  Call subroutine subr.mc on the MAP. 
    subr (hist, &time_clk, mapnum); 
 
 
//  Print out the number of clocks. 
printf ("%lld clocks\n", time_clk); 
 
//  Print title of data.   */ 
        printf("\nNonlin  Number    n = %lld\n",n); 
 
//  For each value of nonlinearity, print out the number of n-variable 
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//    functions with that nonlinearity. 
        for (i = 0; i <= (1<<n); i++){ 
                printf("  %lld       %lld  \n",i, hist[i]); 
         }//for (i = 0; i <= (1<<2); i++){ 
 
    map_free (1); 
 
    exit(0); 
 
    }//int main (int argc, char *argv[]) { 
 

2. subr.mc 

/***************************************************************************/ 
/*                                                                         */ 
/*  subr.mc  - MAP C subroutine to compute the nonlinearity of functions.  */ 
/*                                                                         */ 
/*       Author:         Jon T. Butler                                     */ 
/*       Created:        November 25, 2007                                 */ 
/*                                                */ 
/*                                                */ 
/*       Modified by:   Timothy O'Dowd                                     */ 
/*       Last modified:  October 19, 2010                                  */ 
/*                                                                         */ 
/*       Description:  This program calls an SRC-6 macro that computes     */ 
/*         the nonlinearity an n-variable function. It computes a histo-   */ 
/*         gram of the nonlinearities over all n-variable functions.       */ 
/*         It can do this for 1 <= n <= 5.  n=6 takes 11,000 years.        */ 
/*                                                                         */ 
/*                                                                         */ 
/***************************************************************************/ 
 
#include <libmap.h> 
 
void subr (int64_t histogram[], int64_t *time, int mapnum) { 
 
 
// Declare an OBM bank in SRC-6 to store the histogram of nonlinearities 
//    for n-variable functions.  For n-variable functions, there are 2^n+1 
//    potential nonlinearities.  When n=5, there are 33 nonlinearities. 
        OBM_BANK_A (Hist, int64_t, 64) 
// 
        int64_t t0, t1; 
        int64_t sel, i, N, n = 4; 
        int64_t my64bit_in; 
        int64_t my64bit_out; 
        int64_t Hist0[64], Hist1[64], Hist2[64], Hist3[64]; 
 
 
        read_timer(&t0); 
// 
        for (i = 0; i < 64; i++){ 
             Hist0[i] = 0; 
             Hist1[i] = 0; 
             Hist2[i] = 0; 
             Hist3[i] = 0; 
        } 
// 
        if (n < 5) 
            N = 1<<(1<<n);           //Form N = 2^(2^n); 
 else 
            N = 0x100000000; 
// 
#pragma loop noloop_dep   //To avoid loop slowdown, separate histogram into 
                          // four separate histograms. 
         
 for (i = 0; i < N; i++){ 
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             my64bit_in = i; 
             my_operator (my64bit_in, &my64bit_out); 
             sel = i & 3; 
             if (sel == 0) Hist0[my64bit_out]++; 
             if (sel == 1) Hist1[my64bit_out]++; 
             if (sel == 2) Hist2[my64bit_out]++; 
             if (sel == 3) Hist3[my64bit_out]++; 
        }//for (i = 0; i < N; i++){ 
// 
        for (i = 0; i < 64; i++) 
             Hist[i] = Hist0[i] + Hist1[i] + Hist2[i] + Hist3[i]; 
 
 
        read_timer(&t1); 
 
        *time = (t1 - t0); 
 
// Return histogram to main.c 
        DMA_CPU (OBM2CM, Hist, MAP_OBM_stripe(1,"A"), histogram, 1, 64*sizeof(int64_t), 
0); 
        wait_DMA (0); 
 
}//subr (int64_t hist[], int64_t *time, int mapnum) { 
 

3. Makefile 

# $Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $ 
# 
# Copyright 2003 SRC Computers, Inc.  All Rights Reserved. 
# 
#       Manufactured in the United States of America. 
# 
# SRC Computers, Inc. 
# 4240 N Nevada Avenue 
# Colorado Springs, CO 80907 
# (v) (719) 262-0213 
# (f) (719) 262-0223 
# 
# No permission has been granted to distribute this software 
# without the express permission of SRC Computers, Inc. 
# 
# This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 
# 
# ----------------------------------- 
 
# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES           = main.c 
 
MAPFILES        = subr.mc 
 
BIN             = main 
 
# ---------------------------------- 
# Multi chip info provided here 
# (Leave commented out if not used) 
# ---------------------------------- 
#PRIMARY        = <primary file 1>   <primary file 2> 
 
#SECONDARY      = <secondary file 1> <secondary file 2> 
 
#CHIP2          = <file to compile to user chip 2> 
 
#----------------------------------- 
# User defined directory of code routines 
# that are to be inlined 
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#------------------------------------ 
 
#INLINEDIR      = 
 
# ----------------------------------- 
# User defined macros info supplied here 
# 
# (Leave commented out if not used) 
# ----------------------------------- 
MACROS          = my_macro/nonlin.v 
MY_BLKBOX       = my_macro/blk.v 
MY_NGO_DIR      = my_macro 
MY_INFO         = my_macro/info 
# ----------------------------------- 
# Floating point macros selection 
# ----------------------------------- 
 
#FPMODE         = SRC_IEEE_V1 # Default SRC version IEEE 
#FPMODE         = SRC_IEEE_V2 # Size reduced SRC IEEE with 
                              # special rounding mode 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
 
MY_MCCFLAGS     = -v -keep 
MY_MFTNFLAGS    = -v 
 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
 
CC              = gcc   # icc   for Intel cc for Gnu 
FC              = ifort # ifort for Intel f77 for Gnu 
#LD             = ifort -nofor_main # for mixed C and Fortran, main in C 
#LD             = ifort # for Fortran or C/Fortran mixed, main in Fortran 
LD              = gcc   # for C codes 
 
MY_CFLAGS       = 
MY_FFLAGS       = 
MY_LDFLAGS      =       # Flags to include libs if needed 
# ----------------------------------- 
# VCS simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEVCS         = yes   # YES or yes to use vcs instead of vcsi 
#VCSDUMP        = yes   # YES or yes to generate vcd+ trace dump 
# ----------------------------------- 
# MODELSIM simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEMDL         = yes   # YES or yes to use modelsim instead of vcs/vcsi 
#USEMDLGUI      = yes   # YES or yes to use modelsim GUI interface 
#MDLDUMP        = yes   # YES or yes to generate vcd trace dump 
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 

 
 
 



 51

4. blk.v 

/***************************************************************************/ 
/*                                                                         */ 
/*  blk.v - black-box file that specifies input and output                 */ 
/*                                                                         */ 
/*       Author:         Timothy O'Dowd                                    */ 
/*       Created:        July 1, 2010                                      */ 
/*       Last modified:  October 3, 2010                               */ 
/*                                                                         */ 
/***************************************************************************/ 
 
module nonlin(TT_p,nl_p,CLK); 
    input  [63:0]          TT_p; 
    output [63:0]          nl_p; 
    input CLK; 
endmodule 

5. Info File 

//***************************************************************************/ 
//*                                                                         */ 
//*  info - info file to specify the input and output of the macro.         */ 
//*                                                                         */ 
//*       Author:         Jon T. Butler                                     */ 
//*       Created:        November 25, 2007                                 */ 
//*                                               */ 
//*       Modified by:    Timothy O'Dowd                                    */ 
//*       Last modified:  October 3, 2010                                   */ 
//*                                                                         */ 
//***************************************************************************/ 
 
BEGIN_DEF "my_operator"          //Name used in .mc file to call macro. 
        MACRO = "nonlin";        //Macro name. 
        STATEFUL = NO; 
        EXTERNAL = NO; 
        PIPELINED = YES;     //n =   2   3   4   5   6    7 
        LATENCY = 8;   //LATENCY =   4   5   6   7   8    9 
 
 
        INPUTS = 1: 
           I0 = INT 64 BITS (TT_p[63:0])      // Input TT_p explicit input 
 
           ; 
 
        OUTPUTS = 1: 
           O0 = INT 64 BITS (nl_p[63:0])    // Output nl_p explicit output 
 
           ; 
        IN_SIGNAL : 1 BITS  "CLK" = "CLOCK"; 
 
        DEBUG_HEADER = # 
             void my_operator__dbg (int64_t TT_p, int64_t *nl_p); 
        #; 
        DEBUG_FUNC = # 
             void my_operator__dbg (int64_t TT_p, int64_t *nl_p){ 
                *nl_p = 6; 
                } 
        #; 
END_DEF 
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6. nonlin.v 

///////////////////////////////////////////////////////////////////////////////////////// 
module nl_mapper (TT, OUT); 
//--------------------------------------------------------------------------------------- 
// nl_mapper  -  Verilog code to convert the truth table TT of a given function f into a  
//    vector, OUT of 2^(n+1) functions - each with 2^n bits - that are the 
//     distance vectors between f and the 2^(n+1) affine functions.  These are 
//    then applied to a ones_count circuit to count the number of 1's, which 
//    are compared to find the minimum distance from f to an affine function. 
// 
// Created:       November 6, 2007 
// Last Modified: November 26, 2007 
// Author:        Jon T. Butler 
// 
// Inputs:        TT   //Truth table of given function, f. 
// Outputs:       OUT  //Vector of 2^(n+1) distances between f and an affine function/ 
// 
//--------------------------------------------------------------------------------------- 
 
 
//; 
parameter n = 4;                // n = the number of variables. 
localparam N = 2**n; 
localparam NN = 2**(n+1); 
 
input  [N-1 : 0]      TT; 
output [N*NN - 1 : 0] OUT; 
reg    [N*NN - 1 : 0] OUT; 
reg    [n : 0]        Y; 
reg    [n-1 : 0]      X; 
reg    temp; 
integer i,j,k; 
 
always @(TT) 
  for (i = 0; i < NN; i = i + 1)            //Enumerates the affine functions. 
    begin 
      Y = i; 
      for (j = 0; j < N; j = j + 1)         //Enumerates the truth table entries. 
         begin 
            X = j; 
            temp = 0; 
            for (k = 0; k < n; k = k + 1)   //Exclusive OR the affine function with f. 
                temp = temp ^ (X[k] & Y[k]); 
            OUT[Y*N + X] = temp ^ TT[X] ^ Y[n]; 
         end 
    end 
// 
// In the innermost for loop, we are exclusive-ORing across the variables involved 
//     in the affine function and the function value itself - TT[X].  Here, Y[k] 
//     determines whether a particular variable X[k] is involved (Y[k] = 1) or not (= 0). 
//     temp is the running exclusive OR. 
// Y[NN-1] determines whether the affine function is linear (Y[NN-1]=0) or the complement 
//     of a linear function (=1). 
 
endmodule 
 
 
///////////////////////////////////////////////////////////////////////////////////////// 
module min(IN, OUT, CLK); 
//--------------------------------------------------------------------------------------- 
// min.v  -   A program to compare 2^(n+1) n+1-bit binary values and to deliver the  
//  smallest to the output.   This can be configured in two ways 
//                1.  Completely pipelined tree 
//                2.  Completely combinational tree (except for a register at the output) 
// 
//              In the case of 1.  this runs a 209.6 MHz. for all values of n.  It was 
//    tried for n up to 8.   At n=8, it takes more than two minutes to compile. 
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//     
//               In the case of 2.  the Freq. value is as follows 
// 
//                       n      Freq. (MHz.)     Total Runtime 
//                       2         111.9 
//                       3         106.1 
//                       4          73.6 
//                       5          70.4 
//                       6          61.2 
//                       7          53.2        2 min. 45 secs. 
//                       8          46.7        7 min. 57 secs. 
// 
//               To have a 1. Completely pipelined tree, use <= in three places 
//                       1.   curr_IN[0] <= IN; 
//                            ....................................... 
//                       2.   if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn])   
//    curr_IN[j][((i + 1)*nn-1)-:nn] <=  
//    curr_IN[j-1][((2*i + 2)*nn-1)-:nn];                   
//            ....................................... 
//                       3.   else  curr_IN[j][((i + 1)*nn-1)-:nn]  <=  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn]; 
//                            ....................................... 
//               To have a 2. Completely combinational tree, use <= in three places 
//                       1.   curr_IN[0] = IN; 
//                            ....................................... 
//                      2.   if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn])   
//    curr_IN[j][((i + 1)*nn-1)-:nn] =  
//    curr_IN[j-1][((2*i + 2)*nn-1)-:nn];                   
//    ....................................... 
//                       3.   else  curr_IN[j][((i + 1)*nn-1)-:nn]  =  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn]; 
//                            ....................................... 
// 
//               NOTE:  This produces many warnings that you have unused elements of a 
//    matrix. 
// 
// 
// Created:       November 7, 2007 
// Last Modified: November 18, 2007 
// Author:        Jon T. Butler 
// 
// Inputs:        IN 
// Outputs:       OUT 
// 
//--------------------------------------------------------------------------------------- 
// 
// NOTE:  This program is the second time, I have used matrices.  For example, curr_min 
//    is the current minimum value.  Using matrices provides control on the structure 
//     of the circuit produced. 
 
 parameter  n = 4;       // Number of variables. 
        localparam nn = n + 1;  // Number of bits in the numbers to be compared. 
        localparam N = 2**nn;   // Number of numbers to be compared.  It is the 
                                //   number of affine functions. 
        output [n:0] OUT;       // OUT is the smallest of the n+1-bit inputs 
        input [nn*N-1:0]  IN;   // IN is an array of 2^(n+1) (n+1)-bit numbers 
        reg  [nn*N-1:0]  curr_IN [nn:0] ; 
        input CLK; 
 
        integer i,j; 
 
        always @(posedge CLK) 
          begin 
            curr_IN[0] <= IN; 
 
            for(j=1; j<=nn; j=j+1)  // Enumerate a level in the comparison tree. 
              begin 
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                for(i=0; i<2**(n+1-j); i=i+1) //Enumerate a position in the current  
       //level. 
                 begin:  increment 
                   if (j%3==0) 
                   if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <  
   curr_IN[j-1][((2*i + 1)*nn-1)-:nn])  curr_IN[j][((i + 1)*nn-1)-:nn] 
   <= curr_IN[j-1][((2*i + 2)*nn-1)-:nn]; 
                   else  curr_IN[j][((i + 1)*nn-1)-:nn]  <= curr_IN[j-1][((2*i + 1)*nn- 
    1)-:nn]; 
                   else 
                    if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] < curr_IN[j-1][((2*i + 1)*nn- 
   1)-:nn])  curr_IN[j][((i + 1)*nn-1)-:nn] <= curr_IN[j-1][((2*i +  
   2)*nn-1)-:nn]; 
                    else  curr_IN[j][((i + 1)*nn-1)-:nn]  <= curr_IN[j-1][((2*i + 1)*nn- 
    1)-:nn]; 
                 end 
             end 
          end 
 
        assign OUT = curr_IN[nn][(nn-1)-:nn]; 
  // curr_IN[j][((i + 1)*nn-1)-:nn] for j=nn and i=0. 
 
endmodule 
 
 
///////////////////////////////////////////////////////////////////////////////////////// 
module Ones_Count (TT, CLK, Count); 
//--------------------------------------------------------------------------------------- 
// Ones_Count.v  -  A program to count the number of 1's in HD (Hamming Distance), 
//        producing that count at Count.  Note that this version of 
//        Ones_Count.v uses a for loop within an always procedural block. 
// 
// Created:       October 29, 2007 
// Last Modified: October 29, 2007 
// Author:        Jon T. Butler 
// 
// Inputs:        TT 
// Outputs:       Count 
// 
// 
//--------------------------------------------------------------------------------------- 
 
//        ;  //   n    Est. Freq.  Req. Freq.    <= Synplify Pro derived values 
//                             6      105.4       100 
//                             7       84.3       100 
//                             8       46.1       100 
        parameter n = 4; 
        localparam N = 2**n; 
        input [N-1:0]  TT; 
        input CLK; 
        output [n:0] Count; 
        reg [n:0] Count; 
        integer i; 
 
        always @(posedge CLK) 
          begin 
          Count = 0; 
            for(i=0; i<N; i=i+1) 
              begin:  increment 
                         if(TT[i])  Count = Count+1; 
              end 
          end 
endmodule 
 
 
///////////////////////////////////////////////////////////////////////////////////////// 
///////////////////////////////////////////////////////////////////////////////////////// 
module nonlin(TT_p,nl_p,CLK); 
//--------------------------------------------------------------------------------------- 
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// nonlin  -  Verilog code to convert the truth table TT of a given function f into a  
//       vector, nl, that is the minimum distance between f and any affine function 
//            on n variables. 
//          This instantiates nl_mapper, a module that converts TT of f into OUT a  
//    (large) vector that is the composite of the distance vectors of f from all 
//              affine functions. 
// 
// Created:       November 12, 2007 
// Last Modified: November 25, 2007 
// Author:        Jon T. Butler 
// 
// Inputs:        TT   //Truth table of given function, f. 
// Outputs:       nl  //The nonlinearity of f (minimum distance between f and an affine 
//    function). 
// 
//--------------------------------------------------------------------------------------- 
// 
//   Data 
// 
// n     Freq.  Total   Comp.        TT   #affine    Prod.  #Pipeline 
//        MHz.   LUTs   Time        Size  Functions          Stages 
// 1     209.6      4     35s          2       4         8      3 
// 2     209.6     35     41s          4       8        32      4 
// 3     173.7    143     44s          8      16       128      5 
// 4     101.3    892  1m  2s         16      32       512      6 
// 5     100.2   2107  4m 42s         32      64      2048      7 
// 6    It will take 11,000 years to enumerate all 6-variable functions. 
 
 
parameter  n = 4;         // n = the number of variables. 
localparam N = 2**n;      // N = 2^n = number of entries in truth table of an n-variable  
      //function. 
localparam NN = 2**(n+1);  // NN = number of affine functions. 
 
defparam u1.n = n; 
defparam u3.n = n; 
 
input  [63:0]          TT_p; 
output [63:0]          nl_p; 
wire   [N-1 : 0]       TT; 
input                  CLK; 
wire   [n   : 0]       nl; 
wire   [NN*N-1:0]      OUT; 
wire   [NN*n+(NN-1):0] IN;        //An array of 2**(n+1) n+1 - bit binary vectors. 
 
assign TT = TT_p[N-1:0]; 
nl_mapper u1 (TT,OUT); 
 
genvar i; 
 
generate 
for (i = 0; i<NN; i=i+1) 
   begin: Loop 
//      Ones_Count u2(OUT[(i+1)*N - 1:i*N],CLK,IN[(i+1)*n + i:i*n + i]);  
// [NN*N - 1:(NN-1)*N] ...  [3*N - 1:2*N] [2*N - 1:N] [N - 1:0] 
      wire  [n : 0] Count; 
//      defparam u2.n = n; 
      Ones_Count u2 (OUT[(i+1)*N - 1:i*N],CLK,Count);  
//  [NN*N - 1:(NN-1)*N] ...  [3*N - 1:2*N] [2*N - 1:N] [N - 1:0] 
      assign IN[(i+1)*n + i:i*n + i] = Count;  
//  [(NN)*n+(NN-1):(NN-1)*n+(NN-1)] ... [3*n+2:2*n+2] [2*n+1:n+1] [n:0] 
   end 
endgenerate 
 
min u3 (IN,nl,CLK); 
assign nl_p = {{(63-n){1'b0}},nl}; 
 
endmodule 
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///////////////////////////////////////////////////////////////////////////////////////// 
///////////////////////////////////////////////////////////////////////////////////////// 
 
///////////////////////////////////   RESULTS ///////////////////////////////////// 
 
// n =               2        3         4          5 
// 
//nonlinearity 
//     0            8        16        32         64 
//     1            8       128       512       2048 
//     2            0       112      3840      31744 
//     3            0         0     17920     317440 
//     4            0         0     28000    2301440 
//     5            0         0     14336   12888064 
//     6            0         0       896   57996288 
//     7            0         0         0  215414784 
//     8            0         0         0  647666880 
//     9            0         0         0 1362452480 
//    10            0         0         0 1412100096 
//    11            0         0         0  556408832 
//    12            0         0         0   27387136 
//    13            0         0         0          0 
///////////////////////////////////////////////////////////////////////////////////////// 
///////////////////////////////////////////////////////////////////////////////////////// 
 

A2. COMPUTATION OF NONLINEARITY USING FWT FOR N=4 

1. main.c 

/***************************************************************************/ 
/*                                                                         */ 
/*  main.c  -    C program to test an SRC-6E implementation of FWTNL       */ 
/*                                                                         */ 
/*       Author:         Jon T. Butler                                     */ 
/*       Created:        November 25, 2007                                 */ 
/*                                          */ 
/*       Modified by:    Timothy O'Dowd                              */ 
/*       Last modified:  October 4, 2010                                   */ 
/*                                                                         */ 
/*       Description:  This program calls an SRC-6 subrouting to compute   */ 
/*         the nonlinearity an n-variable function. It computes a histo-   */ 
/*         gram of the nonlinearities over all n-variable functions.       */ 
/*         It can do this for 1 <= n <= 5.  n=6 takes 11,000 years.        */ 
/*                                                                         */ 
/*                                                                         */ 
/***************************************************************************/ 
 
 
#include <map.h> 
#include <stdlib.h> 
 
void subr (int64_t*, int64_t*, int ); 
 
int main (int argc, char *argv[]) { 
        int mapnum = 0; 
        int64_t i, n = 4; 
        int64_t time_clk; 
        int64_t *hist; 
 
// Allocate array of hist values. 
    hist = (int64_t *) malloc (64*sizeof (int64_t)); 
 
    map_allocate (1); 
 
//  Call subroutine subr.mc on the MAP. 
    subr (hist, &time_clk, mapnum); 
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//  Print out the number of clocks. 
printf ("%lld clocks\n", time_clk); 
 
//  Print title of data.   */ 
        printf("\nNonlin  Number    n = %lld\n",n); 
 
//  For each value of nonlinearity, print out the number of n-variable 
//    functions with that nonlinearity. 
        for (i = 0; i <= (1<<n); i++){ 
                printf("  %lld       %lld  \n",i, hist[i]); 
         }//for (i = 0; i <= (1<<2); i++){ 
 
    map_free (1); 
   
    exit(0); 
 
    }//int main (int argc, char *argv[]) { 
 

2. subr.mc 

/***************************************************************************/ 
/*                                                                         */ 
/*  subr.mc  - MAP C subroutine to compute the nonlinearity of functions.  */ 
/*                                                                         */ 
/*       Author:         Jon T. Butler                                     */ 
/*       Created:        November 25, 2007                                 */ 
/*                                                */ 
/*                                                */ 
/*       Modified by:     Timothy O'Dowd                                   */ 
/*       Last modified:   October 19, 2010                                 */ 
/*                */ 
/*                                                                         */ 
/*       Description:  This program calls an SRC-6 macro that computes     */ 
/*         the nonlinearity an n-variable function. It computes a histo-   */ 
/*         gram of the nonlinearities over all n-variable functions.       */ 
/*         It can do this for 1 <= n <= 5.  n=6 takes 11,000 years.        */ 
/*                                                                         */ 
/*                                                                         */ 
/***************************************************************************/ 
 
#include <libmap.h> 
 
void subr (int64_t histogram[], int64_t *time, int mapnum) { 
 
 
// Declare an OBM bank in SRC-6 to store the histogram of nonlinearities 
//    for n-variable functions.  For n-variable functions, there are 2^n+1 
//    potential nonlinearities.  When n=5, there are 33 nonlinearities. 
        OBM_BANK_A (Hist, int64_t, 64) 
// 
        int64_t t0, t1; 
        int64_t sel, i, N, n = 4; 
        int64_t my64bit_in; 
        int64_t my64bit_out; 
        int64_t Hist0[64], Hist1[64], Hist2[64], Hist3[64]; 
 
 
        read_timer(&t0); 
// 
        for (i = 0; i < 64; i++){ 
             Hist0[i] = 0; 
             Hist1[i] = 0; 
             Hist2[i] = 0; 
             Hist3[i] = 0; 
        } 
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// 
        if (n < 5) 
            N = 1<<(1<<n);           //Form N = 2^(2^n); 
        else 
            N = 0x100000000; 
// 
#pragma loop noloop_dep   //To avoid loop slowdown, separate histogram into 
                          // four separate histograms. 
        for (i = 0; i < N; i++){ 
      my64bit_in = i; 
             my_operator (my64bit_in, &my64bit_out); 
             sel = i & 3; 
             if (sel == 0) Hist0[my64bit_out]++; 
             if (sel == 1) Hist1[my64bit_out]++; 
             if (sel == 2) Hist2[my64bit_out]++; 
             if (sel == 3) Hist3[my64bit_out]++; 
        }//for (i = 0; i < N; i++){ 
// 
        for (i = 0; i < 64; i++) 
             Hist[i] = Hist0[i] + Hist1[i] + Hist2[i] + Hist3[i]; 
 
 
        read_timer(&t1); 
 
        *time = (t1 - t0); 
 
// Return histogram to main.c 
        DMA_CPU (OBM2CM, Hist, MAP_OBM_stripe(1,"A"), histogram, 1, 64*sizeof(int64_t), 
0); 
        wait_DMA (0); 
 
}//subr (int64_t hist[], int64_t *time, int mapnum) { 
 

3. Makefile 

# $Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $ 
# 
# Copyright 2003 SRC Computers, Inc.  All Rights Reserved. 
# 
#       Manufactured in the United States of America. 
# 
# SRC Computers, Inc. 
# 4240 N Nevada Avenue 
# Colorado Springs, CO 80907 
# (v) (719) 262-0213 
# (f) (719) 262-0223 
# 
# No permission has been granted to distribute this software 
# without the express permission of SRC Computers, Inc. 
# 
# This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 
# 
# ----------------------------------- 
 
# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES           = main.c 
 
MAPFILES        = subr.mc 
 
BIN             = main 
 
# ---------------------------------- 
# Multi chip info provided here 
# (Leave commented out if not used) 
# ---------------------------------- 
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#PRIMARY        = <primary file 1>   <primary file 2> 
 
#SECONDARY      = <secondary file 1> <secondary file 2> 
 
#CHIP2          = <file to compile to user chip 2> 
 
#----------------------------------- 
# User defined directory of code routines 
# that are to be inlined 
#------------------------------------ 
 
#INLINEDIR      = 
 
# ----------------------------------- 
# User defined macros info supplied here 
# 
# (Leave commented out if not used) 
# ----------------------------------- 
MACROS          = my_macro/FWTNL.v 
MY_BLKBOX       = my_macro/blk.v 
MY_NGO_DIR      = my_macro 
MY_INFO         = my_macro/info 
# ----------------------------------- 
# Floating point macros selection 
# ----------------------------------- 
 
#FPMODE         = SRC_IEEE_V1 # Default SRC version IEEE 
#FPMODE         = SRC_IEEE_V2 # Size reduced SRC IEEE with 
                              # special rounding mode 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
 
MY_MCCFLAGS     = -v -keep 
MY_MFTNFLAGS    = -v 
 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
 
CC              = gcc   # icc   for Intel cc for Gnu 
FC              = ifort # ifort for Intel f77 for Gnu 
#LD             = ifort -nofor_main # for mixed C and Fortran, main in C 
#LD             = ifort # for Fortran or C/Fortran mixed, main in Fortran 
LD              = gcc   # for C codes 
 
MY_CFLAGS       = 
MY_FFLAGS       = 
MY_LDFLAGS      =       # Flags to include libs if needed 
# ----------------------------------- 
# VCS simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEVCS         = yes   # YES or yes to use vcs instead of vcsi 
#VCSDUMP        = yes   # YES or yes to generate vcd+ trace dump 
# ----------------------------------- 
# MODELSIM simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEMDL         = yes   # YES or yes to use modelsim instead of vcs/vcsi 
#USEMDLGUI      = yes   # YES or yes to use modelsim GUI interface 
#MDLDUMP        = yes   # YES or yes to generate vcd trace dump 
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 
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4. blk.v 

/***************************************************************************/ 
/*                                                                         */ 
/*  blk.v - black-box file that specifies input and output                 */ 
/*                                                                         */ 
/*       Author:         Timothy O'Dowd                                    */ 
/*       Created:        September 8, 2010                                 */ 
/*       Last modified:  September 8, 2010                                 */ 
/*                                                                         */ 
/***************************************************************************/ 
 
module FWTNL (TT,minNL,CLK); 
    input  [63:0]          TT; 
    output [63:0]          minNL; 
    input CLK; 
endmodule 
 

5. Info File 

//***************************************************************************/ 
//*                                                                         */ 
//*  info - info file to specify the input and output of the macro ...      */ 
//*                                                                         */ 
//*       Author:         Timothy O'Dowd                                    */ 
//*       Created:        September 8, 2010                                 */ 
//*       Last modified:  September 8, 2010                                 */ 
//*                                                                         */ 
//***************************************************************************/ 
 
BEGIN_DEF "my_operator"          //Name used in .mc file to call macro. 
        MACRO = "FWTNL";        //Macro name. 
        STATEFUL = NO; 
        EXTERNAL = NO; 
        PIPELINED = YES;       //n =    2   3   4    5    6    7 
        LATENCY = 64;      //LATENCY =  4   8   16   33   64   128 
 
        INPUTS = 1: 
           I0 = INT 64 BITS (TT[63:0])      // Input TT explicit input 
 
           ; 
 
        OUTPUTS = 1: 
           O0 = INT 64 BITS (minNL[63:0])    // Output minNL explicit output 
 
           ; 
        IN_SIGNAL : 1 BITS  "CLK" = "CLOCK"; 
 
        DEBUG_HEADER = # 
             void my_operator__dbg (int64_t TT, int64_t *minNL); 
        #; 
        DEBUG_FUNC = # 
             void my_operator__dbg (int64_t TT, int64_t *minNL){ 
                *minNL = 6; 
                } 
        #; 
END_DEF 
 

6. FWTNL.v 

module FWT(CLK,TT,FRM); 
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//--------------------------------------------------------------------------------------- 
// FWT    Fast Walsh Transform - Pipelined Version) 
// 
// Created:       January 24, 2010  (from FWT0) 
// Author:   Jon T. Butler 
// 
// Last Modified: September 5, 2010 
// Modified by:   Timothy O'Dowd 
// 
// Input:   TT   - truth table of a function under test 
// Output:  FWT  - the fast Walsh transform 
// 
// This implements the fast Walsh transform (see T. Ritter, "Measuring Boolean function 
//   nonlinearity by Walsh transfrom," http://www.ciphersbyritter.com/ARTS/MEASNONL.HTM). 
//   For an n-variable function, there are n stages, each with 2^n/2 2-input 2-output 
//   modules.  The left output of a module is the sum of the two inputs, a+b, and the 
//   right output is the difference of the two inputs, a-b.  The interconnecting pattern 
//   is shown below for n = 3 (from Ritter). 
// 
// x1x2x3 = 000 001 010 011 100 101 110 111    Values  # bits 
// original  1   0   0   1   1   1   0   0    1 <-> 0  (1 bit) Interconnection of Stages 
//           ^---^   ^---^   ^---^   ^---^                                   level 
//                                                                Pos.   0     1      2 
//    first  1   1   1  -1   2   0   0   0    2 <-> -1 (2 bits)   000    L0    L0     L0 
//           ^-------^       ^-------^                            001    R0    L1     L1 
//               ^-------^       ^-------^                        010    L1    R0     L2 
//   second  2   0   0   2   2   0   2   0    4 <-> -2 (3 bits)   011    R1    R1     L3 
//           ^---------------^                                    100    L2    L2     R0 
//               ^---------------^                                101    R2    L3     R1 
//                   ^---------------^                            110    L3    R2     R2 
//                       ^---------------^                        111    R3    R3     R3 
//           4   0   2   2   0   0  -2   2    8 <-> -4 (4 bits) 
//                                            2^g <-> -2^(g-1) (g+1 bits) 
//---------------------------------------------------------------------------------------
----- 
// The stages are interconnected by in, a wire array, as follows. 
// 
//       TT  in[0]       in[1]       in[2]       in[3]      bit index 
// (111) 0     -           -           -           0           31 
//             -           -           0           0           30 
//             -           0           0           1           29 
//             0           0           0           0           28 
// 
// (110) 0     -           -           -           1           27 
//             -           -           0           1           26 
//             -           0           1           1           25 
//             0           0           0           0           24 
//                               .                        . 
//                               .                        . 
//                               .                        . 
// (010) 0     -           -           -           0           11 
//             -           -           0           0           10 
//             -           0           0           1            9 
//             0           1           0           0            8 
// 
// (001) 0     -           -           -           0            7 
//             -           -           0           0            6 
//             -           0           0           0            5 
//             0           1           0           0            4 
// 
// (000) 1     -           -           -           0            3 
//             -           -           0           1            2 
//             -           0           1           0            1 
//             1           1           0           0            0 
// 
parameter  n = 4;                  // n = number of variables 
parameter  level = n;              // level = level index 
localparam N = 2**n;               // N = number of input assignments. 
/////////////////////////////// module inputs/outputs //////////////////////////////// 
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input                 CLK;    // Clock. 
input  [N-1:0]         TT;    // Input assignments in truth table of input function. 
output [N*(n+1)-1:0]  FRM;    // Each of the N words ([0:N-1]) in output XFRM has n+1  
    //bits ([n:0]). [n:0] 
wire   [N*(n+1)-1:0]  FRM;    // Each of the N words ([0:N-1]) in output XFRM has n+1  
    //bits ([n:0]). [n:0] 
////////////////////////////////////////////////////////////////////////////////////// 
//  Discovery (01/21/10) Apparently, Verilog 2001 ONLY allows one dimensional array as an 
//       output.  However, it allows internal arrays (such as below) to  
//      be a 2 dimensional array. 
////////////////////////////////////////////////////////////////////////////////////// 
wire  [N*(n+1)-1:0] in[n:0];        //Internal interconnection among FWT stages. 
wire  [N*(n+1)-1:0] pipe[n:0];      //Internal pipeline registers. 
generate 
        genvar gg; 
        for (gg = 0; gg < N; gg=gg+1) 
                begin:Loop1 
                        assign in[0][gg*(n+1)+:1] = TT[gg];//Set in[0] to input TT. 
                end 
endgenerate 
////////////////////////////////////////////////////////////////////////////////////// 
//  Discovery (01/25/10) Synplify Pro 8.8.0.4 on my office PC does NOT accept 
//       defparam u1.level = g; 
//       stage u1 (A1_in, A2_in, B1_out, B2_out); 
//  It gives "Expecting generate item" for the defparam u1.level = g statement (whether 
//  it is located before or after     stage u1 (A1_in, A2_in, B1_out, B2_out); ). 
//  However, if you use stage #(.level(g)) u1 (A1_in, A2_in, B1_out, B2_out); , it 
//  does not complain.   However, on my home laptop, Synplify Pro accepts the former. 
////////////////////////////////////////////////////////////////////////////////////// 
generate 
genvar g,h; 
for (g = 0; g<n; g=g+1)              //g is the level in the FWT circuit 
  begin:Loop6                        //h is the index to the stages within one level. 
    for (h = 0; h < N/2; h=h+1) 
      begin:Loop2 
        if (g%3 == 2) //if (g==1000) 
          begin:Loop4 
            pipeline #(.g(g)) u2 (in[g][left(g,h,n)*(n+1)+:g+1],  CLK,    
   pipe[g][left(g,h,n)*(n+1)+:g+1]); 
            pipeline #(.g(g)) u3 (in[g][right(g,h,n)*(n+1)+:g+1], CLK,    
   pipe[g][right(g,h,n)*(n+1)+:g+1]); 
            stage #(.g(g)) u1 (pipe[g][left(g,h,n)*(n+1)+:g+1],     
   pipe[g][right(g,h,n)*(n+1)+:g+1],  
   in[g+1][left(g,h,n)*(n+1)+:g+2],  
   in[g+1][right(g,h,n)*(n+1)+:g+2]); 
            //stage(left_in,right_in,left_out,right_out)        
          end 
 else 
          begin:Loop5 
            stage #(.g(g)) u4 (in[g][left(g,h,n)*(n+1)+:g+1],     
   in[g][right(g,h,n)*(n+1)+:g+1], in[g+1][left(g,h,n)*(n+1)+:g+2],  
   in[g+1][right(g,h,n)*(n+1)+:g+2]); 
            //stage(left_in,right_in,left_out,right_out) 
          end 
     end 
  end 
endgenerate 
 
assign FRM = in[n]; 
 
////////////////////////////////////////////////////////////////////////////////////// 
function integer left    //left is an index to an output used by a stage to specify its  
     //left connection. 
(input integer g,h,n);                          // n = 3 Example 
 integer mask, mask_r, mask_l; 
      begin:left_loop                            //  g=0 mask    g=1 mask    g=2  mask 
        mask = 2**g;                             // h   L  R    *  L  R   *   L  R      * 
        mask_r = mask - 1;                       // 0   0  1 (00*) 0  2 (0*0) 0  4 (*00) 
        mask_l =2**(n-1)-1 - mask_r;             // 1   2  3 (01*) 1  3 (0*1) 1  5 (*01) 



 63

        left = ((mask_l & h)<<1) + (mask_r & h); // 2   4  5 (10*) 4  6 (1*0) 2  6 (*10) 
       end                                       // 3   6  7 (11*) 5  7 (1*1) 3  7 (*11) 
endfunction                                      // 
                                                 // So, for g = 1, for example, we have 
function integer right   
//right is an index to an output used by a stage to specify its right connection. 
                                       //mask = 2**g = 010, 
(input integer g,h,n);                 //mask_r = mask - 1 = 2 - 1 = 001, and 
integer mask, mask_r, mask_l;          //mask_l = 2**(n-1)-1 - mask_r = 4-1 - 1 = 2 = 010 
   begin:right_loop                    // mask_l & mask_r extract from h, its l & r side. 
    mask = 2**g;                       // left  = (010&h)<<1       + 001&h. 
    mask_r = mask - 1;                 // right = (010&h)<<1 + 010 + 001&h. 
    mask_l = 2**(n-1)-1 - mask_r;      // <<1 is to move mask_l left once to admit the *  
      //bit. 
    right = ((mask_l & h)<<1)+ (mask_r & h) + mask; 
   end 
endfunction 
endmodule 
 
//////   RESULTS W/ NO PIPELINE REGISTERS  Updated:  09/05/10  ////// 
//n  =          1     2      3      4     5      6        7     8       9     10          
//Freq. (MHz) 148.6  115.0  93.6 70.9   60.4   50.8     44.8   39.6   35.3   32.8 
//#LUTs (%) 4(0%) 23(0%) 101(0%) 316(0%)797(1%) 2226(3%) 5700(8%) 14270(21%) 35548(52%)  
//85280(126%) 
// #Reg Bits    0     0      0      0     0      0        0     0       0      0 
/////////////////////////////////////////////////////////////////////////////////////// 
 
//////   RESULTS W/ PIPELINE REGISTERS  (g%3 == 1) Updated:  09/05/10  ////// 
//n  =          1     2      3      4     5      6        7     8       9     10          
//Freq. (MHz) 148.6  115.0 119.7  90.6  70.5   101.0    85.6   68.0   96.6   83.7 
//#LUTs (%) 4(0%) 23(0%) 86(0%) 318(0%) 853(1%) 2278(3%) 5883(8%) 14772(21%) 36734(54%)  
//88443(130%) 
// #Reg Bits    0     0      0      0     0      0        0     0       0      0 
/////////////////////////////////////////////////////////////////////////////////////// 
 
 
////////////////////////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////////////////////////// 
module stage(left_in, right_in, left_out, right_out); 
//--------------------------------------------------------------------------------------- 
//  One stage only.  Note that the structure of stage is independent of n, the number 
//      of variables.  It is dependent only on the level at which the stage resides. 
// 
parameter g = 3; 
/////////////////////////////// module inputs/outputs //////////////////////////////// 
// 
input    [g:0] left_in;   // left input. 
input    [g:0] right_in;  // left input. 
// 
output   [g+1:0]   left_out;  // left output. 
output   [g+1:0]   right_out; // left output. 
reg      [g+1:0]   left_out;  // left output. 
reg      [g+1:0]   right_out; // left output. 
reg      [g+1:0]   temp_right; 
reg      [g+1:0]   temp_left; 
// 
///////////////////////////////    module function    //////////////////////////////// 
 
always @(*) 
begin 
// 
//Sign extend left_in and right_in unless = 100...0, in which case make it 0100...0. 
// This is done to accommodate 2^g >= Walsh coef >= -2^(g-1) (g+1 bits), as discussed 
// above. That is, the special case, Walsh coef = 2^g, is viewed as a positive integer. 
// instead of the usual negative integer. 
// 
        if (left_in != 2**g)//{1'b1,{g{1'b0}}}) 
            temp_left = {left_in[g],left_in}; 
        else 



 64

            temp_left = {1'b0,left_in}; 
// 
  if (right_in != 2**g)//{1'b1,{g{1'b0}}}) 
      temp_right = {right_in[g],right_in}; 
  else 
      temp_right = {1'b0,right_in}; 
// 
        left_out  = temp_left + temp_right; 
        right_out = temp_left - temp_right; 
// 
end 
// 
endmodule 
 
////////////////////////////////////////////////////////////////////////////////////// 
 
////////////////////////////////////////////////////////////////////////////////////// 
////////////////////////////////////////////////////////////////////////////////////// 
module pipeline(pipe_in, CLK, pipe_out); 
//--------------------------------------------------------------------------------------- 
//  One stage only.  Note that the structure of stage is independent of n, the number 
//      of variables.   It is dependent only on the level at which the stage resides. 
// 
 
parameter  g = 64; 
/////////////////////////////// module inputs/outputs //////////////////////////////// 
 
input   [g:0]   pipe_in; 
input   CLK; 
 
output   [g:0] pipe_out; 
reg      [g:0] pipe_out; 
//assign pipe_out = CLK?pipe_in:pipe_out;  /This works also. 
always @(posedge CLK) 
        pipe_out <= pipe_in; 
 
endmodule 
 
////////////////////////////////////////////////////////////////////////////////////// 
 
module convert(CLK, coef_in, coef_out); 
//--------------------------------------------------------------------------------------- 
// This module takes the FWT coefficients and converts them to distances to linear  
// functions. 
//      Specifically, this is already done for the first coefficients. A conversion is  
//  needed for all of the other coefficients. 
// 
// The example below shows the conversion needed. 
// 
//      c0              c1-c15          Add 8           If a>8 
//                                                      a <- 16-a 
// 
//    10000  16         01000  8        10000  16       00000  0 
//    01111  15         00111  7        01111  15       00001  1 
//    . 
//    . 
//    . 
//    . 
//    00010  2          11010 -6        00010  2        00010  2 
//    00001  1          11001 -7        00001  1        00001  1 
//    00000  0          11000 -8        00000  0        00000  0 
// 
//      Author: Tim O'Dowd 
//      Last Updated: 9/7/2010 
 
 
 
 
parameter   n = 3;    // NUMBER OF VARIABLES IN FUNCTION 
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localparam  N = 2**n; // NUMBER OF VALUES IN TRUTH TABLE OF FUNCTION 
localparam  nn = n+1; // NUMBER OF BITS IN EACH WORD 
 
input [N*(n+1)-1:0] coef_in;  
// THIS IS THE FUNCTION'S FWT. IT HAS N WORDS EACH WITH n+1 BITS. FOR CASE                                   
// n = 4, THERE WILL BE 16 WORDS. EACH WORD WILL BE 5 BITS IN LENGTH.                   
// TOTAL OF 16*5-1 = 80 BITS. HERE N*(n+1)-1 = 79. 
input   CLK;                            // Clock input 
 
output [N*(n+1)-1:0] coef_out; //OUTPUT SHOULD BE SAME LENGTH AS INPUT 
reg    [N*(n+1)-1:0] coef_out; 
 
reg [n:0] FWT;                  
//variable to hold the parsed inputs corresponding to the FWT coefficients (see column 
//marked c1-c15 above) 
reg [n:0] a;                    
//variable to hold modified FWT inputs (see column marked Add 8 above) 
 
integer g; //variable to increment FOR loop 
 
always@(posedge CLK) 
begin 
 
// the least significant input requires special handling 
FWT = coef_in [n:0]; 
a   = FWT; 
if(a > N/2) a = N - a; 
coef_out[n:0] = a; 
 
// all other bits are handled here 
        for (g = 1; g < N; g = g+1)      
// begin loop to go through input word by word starting with next to least significant nn 
bits 
                begin:Loop1 
                        FWT = coef_in [((g+1)*n+g)-:nn];         
// Get the next most significant n bits of coef_in 
          a = FWT + N/2;                           
// Add N/2 to FWT to get value of a (EXCLUDING CASE OF LEAST SIGNIFICANT BIT) 
                        if (a > N/2)  a = N - a;                 
// If a is greater than N/2, then set a to N-a 
                        coef_out [((g+1)*n+g)-:nn] = a;          
// Store a in the appropriate bits in the output 
                        end                     // repeat loop 
end 
 
endmodule 
 
////////////////////////////////////////////////////////////////////////////////////// 
 
module min(IN, OUT, CLK); 
//--------------------------------------------------------------------------------------- 
// min.v  -  A program to compare 2^(n+1) n+1-bit binary values and to deliver the 
//       smallest to the output.   This can be configured in two ways: 
//                1.  Completely pipelined tree 
//                2.  Completely combinational tree (except for a register at the output) 
// 
//               In the case of 1.  this runs a 209.6 MHz. for all values of n.  It was 
//    tr iedfor n up to 8. At n=8, it takes more than two minutes to compile. 
// 
//               In the case of 2.  the Freq. value is as follows 
// 
//                       n      Freq. (MHz.)     Total Runtime 
//                       2         111.9 
//                       3         106.1 
//                       4          73.6 
//                       5          70.4 
//                       6          61.2 
//                       7          53.2        2 min. 45 secs. 
//                       8          46.7        7 min. 57 secs. 
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// 
//               To have a 1. Completely pipelined tree, use <= in three places 
//                       1.   curr_IN[0] <= IN; 
//                            ....................................................... 
//                       2.   if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <  
//     curr_IN[j-1][((2*i + 1)*nn-1)-:nn])   
//    curr_IN[j][((i + 1)*nn-1)-:nn] <=  
//    curr_IN[j-1][((2*i + 2)*nn-1)-:nn];                   
//    ....................................................... 
//                       3.   else  curr_IN[j][((i + 1)*nn-1)-:nn]  <=  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn]; 
//                            ....................................... 
//               To have a 2. Completely combinational tree, use <= in three places 
//                       1.   curr_IN[0] = IN; 
//                            ....................................................... 
//                       2.   if(curr_IN[j-1][((2*i + 2)*nn-1)-:nn] <  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn])   
//    curr_IN[j][((i + 1)*nn-1)-:nn] =  
//    curr_IN[j-1][((2*i + 2)*nn-1)-:nn]; 
//                            ....................................................... 
//                       3.   else  curr_IN[j][((i + 1)*nn-1)-:nn]  =  
//    curr_IN[j-1][((2*i + 1)*nn-1)-:nn]; 
//                            ....................................................... 
// 
//               NOTE:  This produces many warnings that you have unused elements of a 
//      matrix. 
// 
// 
// Created:       November 7, 2007 
// Last Modified: September 7, 2010 by Timothy O'Dowd 
// Author:        Jon T. Butler 
// 
// Inputs:        IN 
// Outputs:       OUT 
// 
//--------------------------------------------------------------------------------------- 
// 
// NOTE:  This program is the second time, I have used matrices.  For example, curr_min 
//    is the current minimum value.  Using matrices provides control on the structure 
//   of the circuit produced. 
 
 parameter  n = 4;       // Number of variables. 
        localparam nn = n + 1;  // Number of bits in the numbers to be compared. 
        localparam N = 2**n;   // Number of numbers to be compared. (2**nn = 2^n) 
        output [n:0] OUT;       // OUT is the smallest of the n+1-bit inputs 
        input [nn*N-1:0]  IN;   // IN is an array of 2^(n+1) (n+1)-bit numbers 
        reg [nn*N-1:0] curr_IN [N:0]; 
        input CLK; 
        reg [n:0] curr_min [N:0]; 
 
        integer i; 
 
        always @(posedge CLK) 
          begin 
            curr_min[0] = {nn{1'b1}}; 
            curr_IN[0]  = IN; 
            for(i=0; i<N; i=i+1) 
              begin:  increment 
                   curr_IN[i+1] <= curr_IN[i];  //Pipeline curr_IN 
                   if(curr_IN[i][((i+1)*nn-1)-:nn] < curr_min[i]) curr_min[i+1]  <=  
   curr_IN[i][((i+1)*nn-1)-:nn]; 
                   else curr_min[i+1] <= curr_min[i]; 
              end 
          end 
        assign OUT = curr_min[N] ; 
 
endmodule 
 
////////////////////////////////////////////////////////////////////////////////////// 
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module FWTNL (TT, minNL, CLK); //Module that integrates FWT.v and convert.v and min.v 
 
//Author: Timothy O'Dowd 
//Created: 5 September, 2010 
 
parameter n = 4; 
localparam N = 2**n; 
 
input                    CLK; //clock input 
input     [63:0]         TT; //input truth table 
output    [63:0]         minNL; //minimum nonlinearity 
reg       [63:0]         minNL; 
 
wire      [N-1:0]        TT_internal; 
assign    TT_internal = TT [N-1:0]; //Assign the internal value of TT 
 
wire      [N*(n+1)-1:0]   temp_FRM; //holds produced Fast Walsh Transform values 
defparam u1.n = n; 
FWT u1(CLK, TT_internal, temp_FRM); 
 
wire      [N*(n+1)-1:0]   temp_coef; //holds temporary FWT coefficients produced 
defparam u2.n = n; 
convert u2(CLK, temp_FRM, temp_coef); 
 
wire      [n:0]           temp_out;  //holds temporary output (minimum nonlinearity) 
defparam u3.n = n; 
min     u3(temp_coef,temp_out,CLK); 
 
always@(CLK) 
begin 
minNL = temp_out; //set the output of the module to the proper value 
end 
 
 
endmodule 
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APPENDIX B.  MATLAB CODE  

B1. ALGORITHM FOR PRODUCING BENT FUNCTION TRUTH TABLE 

The code for the algorithm described in this thesis that is used to  discover a 

bent function's truth table given a nearby function's truth table is listed in this appendix. 

This code is written for the case where n = 4, but can be modified in order to be used for 

other n.  

There are several files that are necessary for this algorithm to work properly. 

FWT.m is a required file used to compute the FWT of a given TT. NL.m is a required file 

used to compute the nonlinearity of a given FWT. functGen.m is a file that generates the 

TT of all functions for a given n. FWT.m and NL.m are called by the other files. 

functGen.m is called by files that seek to run the algorithm for sets of input functions. 

 NLfive.m, NLfour.m, and NLthree.m are files that find a function with 

incrementally higher nonlinearity. They each require an input TT with a nonlinearity of 

five, four, and three, respectively.  

findbent3.m uses functGen.m to apply NLthree.m to every function with a 

nonlinearity of three and produces functions with nonlinearity of four. findbent3to5.m is 

similar, but takes all the functions that were produced with a nonlinearity of four and 

inputs them to NLfour.m to produce output functions with nonlinearities of five. 

findbent3to6.m takes this one step further, taking all functions produced with a 

nonlinearity of five and applying NLfive.m to produce bent functions. All of these codes 

count the number of successes, failures, and the unique functions produced. 

findbent4.m and findbent5.m are analogous to findbent3.m. In addition, 

findbent4to6.m is analogous to findbent3to6.m.  
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1. FWT.m 

 
%% 
%Timothy O'Dowd 
%MATLAB Code to compute the Fast Walsh Transform of an input Truth 
Table 
%Written: Aug 1, 2010 
%Modified: Nov 4, 2010 
  
%INPUTS:  
%TT - the truth table of a Boolean function. TT MUST have length 2^n 
%n - the number of variables in the Boolean function. 
%OUTPUT: 
%FWT - the fast Walsh transform of the input TT  
  
%This code is written and verified for the n=4 case. It can be modified 
to work 
%for other values of n. Bent functions only exist for even n. 
  
function transform = FWT(TT,n) 
  
g = 0; %initialize g, which keeps track of iterations of butterfly 
modules 
h = 0; %initialize h, which keep track of how many pairs of butterflys 
have been computed 
curr = []; %array to keep track of current array 
next = []; %array to keep track of computed array 
delta = 2^g; %number to keep track of gap between left and right inputs 
into butterfly 
left = 1; 
right = left+delta; 
numPairs = 2^n/2;%number of butterfly pairs 
  
%paired = TT*0; %initliaze paired to an array the size of TT with all 
zero elements 
  
curr = TT; %set TT to current array 
  
  
for g=0:1:n-1 
         
    for h=1:1:numPairs 
         
        delta = 2^g; %every further array has pairs spread further 
apart 
         
        if g == 0 
            left = 2*h-1; 
            right = left + delta; 
            [next(left),next(right)] = 
butterfly(curr(left),curr(right)); 
        elseif g == n-1 
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            left = h; 
            right = left + delta; 
            [next(left),next(right)] = 
butterfly(curr(left),curr(right)); 
        elseif h <= 2*g  
            left = h; 
            right = left + delta; 
            [next(left),next(right)] = 
butterfly(curr(left),curr(right)); 
        elseif h <= 4*g 
            left = h + 2*g; 
            right = left + delta; 
            [next(left),next(right)] = 
butterfly(curr(left),curr(right)); 
        elseif h <= 6*g 
            left = h + 4*g; 
            right = left + delta; 
            [next(left),next(right)] = 
butterfly(curr(left),curr(right)); 
        elseif h <= 8*g 
            left = h + 6*g; 
            right = left + delta; 
            [next(left),next(right)] = 
butterfly(curr(left),curr(right)); 
  
             
        end     
    end 
     
curr = next;    
end 
  
transform = next; %return the FWT 
  
  
  
function [x,y] = butterfly(a,b) 
x = a+b; 
y = a-b; 
end 
  
end 
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2. NL.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to compute the Nonlinearity of an input FWT 
%Written: Aug 1, 2010 
%Modified: Nov 4, 2010 
  
  
%INPUTS:  
%FWT - the Fast Walsh Transform of a Boolean function. FWT MUST have 
length 2^n 
%n - the number of variables in the Boolean function. 
%OUTPUT: 
%nonlinearity - the nonlinearity of a Boolean function 
  
%this code works for any value of n 
  
function nonlinearity = NL(FWT,n) 
  
a = FWT; %put FWT into working array 
  
for i=2:1:2^n 
    a(i) = a(i) + 2^n/2; %normalize a 
end 
  
for i=1:1:2^n 
    if a(i) >= 2^n/2 
        a(i) = 2^n - a(i); %take absolute value of a 
    end 
end 
  
nonlinearity = min(a); %return nonlinearity 
  
  
end 
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3. functGen.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to compute the Nonlinearity of an input FWT 
%Written: Aug 1, 2010 
%Modified: Nov 4, 2010 
  
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%init - variable indicating the first call to the function 
%       0 = first call; any other value valid for subsequent calls 
%current - last function generated 
%       for first call any value is valid 
%OUTPUT: 
%exec - next TT sequentially 
  
%this code works for any value of n 
  
function exec = functGen(n,init,current) 
initial = []; %initialize initial 
  
for q=1:1:2^n 
initial = [initial 0]; %create properly sized array full of zeros 
end 
  
if init == 0 %denotes the first call of this function 
    current = initial; 
end 
  
  
%for f = 1:1:10 %2^(2^n) %repeat 2^(2^n) times 
if init ~= 0     
    t = 1; %set t to 1 
    good = 1; 
    while (good) %t = 1:1:2^n %for every bit of TT 
        if (current(t) == 1) %if current bit being looked at is already 
a one 
            current(t) = 0; %set it to zero 
            t = t + 1; %and look at next bit 
        else 
            current(t) = 1; %if not, set bit to 1 and end 
            good = 0; %terminate loop 
        end 
    end 
end 
%end 
exec = current; 
end 
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4. NLthree.m 

 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for a function with NL=4 
%  given a function with NL=3 
%Written: Sep 12, 2010 
%Modified: Nov 15, 2010 
  
%INPUTS:  
%TT - the truth table of a Boolean function. TT MUST have length 2^n 
%n - the number of variables in the Boolean function. 
%OUTPUT: 
%truth - the truth table of a function nonlinearity increased by one  
%nonlin - the nonlinearity of the output function 
  
%This code is written and verified for the n=4 case. It can be modified 
%to work for other values of n. Bent functions only exist for even n. 
  
function [truth,nonlin] = NLthree(TT,n) 
  
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bentweightLow = 2^(n-1)-2^(n/2-1); %low value of a bent function's  
          %weight 
bentweightHigh = 2^(n-1)+2^(n/2-1); %high value of a bent function's  
           %weight 
  
nextTT = TT; %iterative TT array 
nextFWT = FWT(TT,n); %iterative FWT array 
oldTT = TT; %storage for previous TT 
oldFWT = nextFWT; %storage for previous FWT 
nextnonlin = NL(nextFWT,n); %iterative value of nonlin 
  
t = 0; %t is TT index search variable 
f = 2; %FWT index search variable variable 
good = 1; %variable used to turn on/off while loop 
switchedbit = 0; %variable used to indicate if bit has been   
   %complemented 
fail = 0; %indicates algorithm failure 
  
%matrix that holds information about how FWT changes as input TT is 
%changed 
TTvsFWT4 =  
[1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1; 
1   -1  1   -1  1   -1  1   -1  1   -1  1   -1  1   -1  1   -1; 
1   1   -1  -1  1   1   -1  -1  1   1   -1  -1  1   1   -1  -1; 
1   -1  -1  1   1   -1  -1  1   1   -1  -1  1   1   -1  -1  1; 
1   1   1   1   -1  -1  -1  -1  1   1   1   1   -1  -1  -1  -1; 
1   -1  1   -1  -1  1   -1  1   1   -1  1   -1  -1  1   -1  1; 
1   1   -1  -1  -1  -1  1   1   1   1   -1  -1  -1  -1  1   1; 
1   -1  -1  1   -1  1   1   -1  1   -1  -1  1   -1  1   1   -1; 
1   1   1   1   1   1   1   1   -1  -1  -1  -1  -1  -1  -1  -1; 
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1   -1  1   -1  1   -1  1   -1  -1  1   -1  1   -1  1   -1  1; 
1   1   -1  -1  1   1   -1  -1  -1  -1  1   1   -1  -1  1   1; 
1   -1  -1  1   1   -1  -1  1   -1  1   1   -1  -1  1   1   -1; 
1   1   1   1   -1  -1  -1  -1  -1  -1  -1  -1  1   1   1   1; 
1   -1  1   -1  -1  1   -1  1   -1  1   -1  1   1   -1  1   -1; 
1   1   -1  -1  -1  -1  1   1   -1  -1  1   1   1   1   -1  -1; 
1   -1  -1  1   -1  1   1   -1  -1  1   1   -1  1   -1  -1  1];  
  
disp('Input Truth Table is:') 
disp(TT) 
disp('Fast Walsh Transform is:') 
disp(nextFWT) 
disp('Nonlinearity is:') 
disp(nextnonlin) 
  
while (nextnonlin < bentNL-2 && ~fail)  
%if function has NL = 3 and fail condition isn't set, use algorithm 
  
     
     
    %In this case, the TT needs three 0's to become  1's 
if (nextFWT(1) == bentweightLow-3)  
     
      %find the next 0 in the TT to change and increment TT counter 
      t = t + 1; %increment t 
      if t > 2^n %here, there is no 0->1 transition that works 
                fail = 1; %set fail condition! 
                t = 1; %reset t to one 
      end 
       
      while (nextTT(t)== 1 && ~fail) 
          t = t + 1; 
          if t > 2^n %here, there is no 0->1 transition that works 
                   fail = 1; %set fail condition! 
                   t = 1; %reset t to one 
          end 
          f = 2; %reset f when a new value of TT entry is used 
      end 
             
        if(~fail)     
           for f=2:1:2^n %test each element of FWT to see if changing t 
           %in TT would give function with LOWER nonlinearity 
             
                if TTvsFWT4(t,f) == -1 && nextFWT(f) == -5 ||   
    TTvsFWT4(t,f) == 1 && nextFWT(f) == 5           
                    good = 0; %if potential transition gives LOWER  
     %nonlinearity we do not try this transistion               
                end 
            end 
             
            if (good) %if criteria is met, we try the transition                   
               disp('Complementing bit:') 
               t 
               oldTT = nextTT; %store old TT 
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               nextTT(t) = nextTT(t)+1; %make 0->1 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
      %increased nonlinearity 
                
               switchedbit = 1; 
            end 
             
        %this portion of code should never be used. a transition will 
        %never be made due to the checks performed above 
             
        if (nextnonlin < bentNL-2 && switchedbit) %check to see if  
        %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
        end 
                
            good = 1; %reset good 
        end  
end 
             
  
        %In this case, the TT needs three 1s to become 0s 
if nextFWT(1) == bentweightHigh+3  
  
     %find the next 0 in the TT to change and increment TT counter 
            t = t + 1; %increment t 
            if t > 2^n %here, there is no 0->1 transition that works 
                        fail = 1; %set fail condition 
                        t = 1; %reset t to one 
            end 
            while (nextTT(t)== 0 && ~fail) 
              t = t + 1; 
              if t > 2^n %here, there is no 0->1 transition that works 
                     fail = 1; %set fail condition 
                     t = 1; %reset t to one 
                end 
                f = 2; %reset f when a new value of TT entry is used 
            end 
             
        if(~fail) 
            for f=2:1:2^n %test each element of FWT to see if changing  
    %t in TT would give LOWER nonlinearity 
             
                if TTvsFWT4(t,f) == -1 && nextFWT(f) == 5 ||   
   TTvsFWT4(t,f) == 1 && nextFWT(f) == -5 
                    good = 0; %if criteria is met we will move on to  
     %next possible transition                
                end 
            end 
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            if (good) %if criteria is met, we try the transition   
               disp('Complementing bit:') 
               t 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)-1; %make 1->0 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
       %increased nonlinearity 
                
               switchedbit = 1; 
                
            end 
  
          %this portion of code should never be used. a transition will 
          %never be made due to the checks performed above 
             
   if (nextnonlin < bentNL-2 && switchedbit) %check to see if   
        %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
      end 
                
            good = 1; %reset good 
        end       
end 
     
            %In this case, the TT correct number of 1's/0's (ambiguous 
            %case) This program DEFAULTS to ADDING a 1 
if nextFWT(1) == bentweightLow - 1 || nextFWT(1) == bentweightLow + 1 
|| nextFWT(1) == bentweightHigh -1 || nextFWT(1) == bentweightHigh + 1 
  
     %find the next 0 in the TT to change and increment TT counter 
            t = t + 1; %increment t 
            if t > 2^n %here, there is no 0->1 transition that works 
                        fail = 1; %note that 1->0 transition is needed 
                        t = 1; %reset t to one 
            end 
            while (nextTT(t)== 1 && ~fail) 
             t = t + 1; 
             if t > 2^n %here, there is no 0->1 transition that works 
                     fail = 1; %note that 1->0 transition is needed 
                     t = 1; %reset t to one 
             end 
                f = 2; %reset f when a new value of TT entry is used 
            end 
             
        if(~fail)   
            for f=2:1:2^n %test each element of FWT to see if changing  
     %t in TT would give LOWER nonlinearity 
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                if TTvsFWT4(t,f) == 1 && nextFWT(f) == 5 ||   
   TTvsFWT4(t,f) == -1 && nextFWT(f) == -5 
                    good = 0; %if criteria is not met we will move on  
     %to next possible transition             
                end 
            end 
             
            if (good) %if criteria is met, we try the transition 
               disp('Complementing bit:') 
               t 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)+1; %make 1->0 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
       %increased nonlinearity 
  
               switchedbit = 1; 
  
            end 
             
         %this portion of code should never be used. a transition will 
         %never be made due to the checks performed above 
             
     if (nextnonlin < bentNL-2 && switchedbit) %check to see if   
       %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
    end 
                
            good = 1; %reset good 
        end    
end 
  
  
  
end 
  
    if(~fail) 
        truth = nextTT; 
        nonlin = nextnonlin; 
        disp('Correct bit chosen!') 
        disp('') 
        disp('New Truth Table:')            
        disp(truth) 
        disp('Nonlinearity is:') 
        disp(nextnonlin) 
    else 
        disp('Algorithm Failure') 
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        truth = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %output array that 
signals failure 
        nonlin = 500; %indicates a failure 
    end 
end 
 

5. NLfour.m 

 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for a function with NL=4 
%  given a function with NL=3 
%Written: Sep 12, 2010 
%Modified: Nov 15, 2010 
  
%INPUTS:  
%TT - the truth table of a Boolean function. TT MUST have length 2^n 
%n - the number of variables in the Boolean function. 
%OUTPUT: 
%truth - the truth table of a function nonlinearity increased by one  
%nonlin - the nonlinearity of the output function 
  
%This code is written and verified for the n=4 case. It can be modified 
%to work for other values of n. Bent functions only exist for even n. 
  
function [truth,nonlin] = NLthree(TT,n) 
  
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bentweightLow = 2^(n-1)-2^(n/2-1); %low value of a bent function's  
      %weight 
bentweightHigh = 2^(n-1)+2^(n/2-1); %high value of a bent function's  
      %weight 
  
nextTT = TT; %iterative TT array 
nextFWT = FWT(TT,n); %iterative FWT array 
oldTT = TT; %storage for previous TT 
oldFWT = nextFWT; %storage for previous FWT 
nextnonlin = NL(nextFWT,n); %iterative value of nonlin 
  
t = 0; %t is TT index search variable 
f = 2; %FWT index search variable variable 
good = 1; %variable used to turn on/off while loop 
switchedbit = 0; %variable used to indicate if bit has been   
   %complemented 
fail = 0; %indicates algorithm failure 
  
%matrix that holds information about how FWT changes as input TT is 
%changed 
TTvsFWT4 =  
[1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1; 
1   -1  1   -1  1   -1  1   -1  1   -1  1   -1  1   -1  1   -1; 
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1   1   -1  -1  1   1   -1  -1  1   1   -1  -1  1   1   -1  -1; 
1   -1  -1  1   1   -1  -1  1   1   -1  -1  1   1   -1  -1  1; 
1   1   1   1   -1  -1  -1  -1  1   1   1   1   -1  -1  -1  -1; 
1   -1  1   -1  -1  1   -1  1   1   -1  1   -1  -1  1   -1  1; 
1   1   -1  -1  -1  -1  1   1   1   1   -1  -1  -1  -1  1   1; 
1   -1  -1  1   -1  1   1   -1  1   -1  -1  1   -1  1   1   -1; 
1   1   1   1   1   1   1   1   -1  -1  -1  -1  -1  -1  -1  -1; 
1   -1  1   -1  1   -1  1   -1  -1  1   -1  1   -1  1   -1  1; 
1   1   -1  -1  1   1   -1  -1  -1  -1  1   1   -1  -1  1   1; 
1   -1  -1  1   1   -1  -1  1   -1  1   1   -1  -1  1   1   -1; 
1   1   1   1   -1  -1  -1  -1  -1  -1  -1  -1  1   1   1   1; 
1   -1  1   -1  -1  1   -1  1   -1  1   -1  1   1   -1  1   -1; 
1   1   -1  -1  -1  -1  1   1   -1  -1  1   1   1   1   -1  -1; 
1   -1  -1  1   -1  1   1   -1  -1  1   1   -1  1   -1  -1  1];  
  
disp('Input Truth Table is:') 
disp(TT) 
disp('Fast Walsh Transform is:') 
disp(nextFWT) 
disp('Nonlinearity is:') 
disp(nextnonlin) 
 
%Only run if input function has NL = 4 and fail condition not met 
  
while (nextnonlin < bentNL-2 && ~fail)  
 
     
     
    %In this case, the TT needs three 0's to become  1's 
if (nextFWT(1) == bentweightLow-3)  
     
            %find the next 0 in the TT to change and increment TT  
  %counter 
            t = t + 1; %increment t 
            if t > 2^n %here, there is no 0->1 transition that works 
                        fail = 1; %set fail! 
                        t = 1; %reset t to one 
            end 
            while (nextTT(t)== 1 && ~fail) 
                t = t + 1; 
                if t > 2^n %here, there is no 0->1 transition that  
       %works 
                        fail = 1; %set fail! 
                        t = 1; %reset t to one 
                end 
                f = 2; %reset f when a new value of TT entry is used 
            end 
             
        if(~fail)     
            for f=2:1:2^n %test each element of FWT to see if changing  
           %in TT would give function with LOWER nonlinearity 
             
                if TTvsFWT4(t,f) == -1 && nextFWT(f) == -5 || 
TTvsFWT4(t,f) == 1 && nextFWT(f) == 5           
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                    good = 0; %if potential transition gives LOWER  
   %nonlinearity we do not try this transistion               
                end 
            end 
             
            if (good) %if criteria is met, we try the transition                   
               disp('Complementing bit:') 
               t 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)+1; %make 0->1 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
       %increased nonlinearity 
                
               switchedbit = 1; 
            end 
             
          %this portion of code should never be used. a transition will 
          %never be made due to the checks performed above 
             
        if (nextnonlin < bentNL-2 && switchedbit) %check to see if  
        %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
        end 
                
            good = 1; %reset good 
        end  
end 
             
  
        %In this case, the TT needs three 1s to become 0s 
if nextFWT(1) == bentweightHigh+3  
  
     %find the next 0 in the TT to change and increment TT counter 
            t = t + 1; %increment t 
            if t > 2^n %here, there is no 0->1 transition that works 
                        fail = 1; %set fail 
                        t = 1; %reset t to one 
            end 
            while (nextTT(t)== 0 && ~fail) 
                t = t + 1; 
                if t > 2^n %here, there is no 0->1 transition that  
     %works 
                        fail = 1; %set fail 
                        t = 1; %reset t to one 
                end 
                f = 2; %reset f when a new value of TT entry is used 
            end 
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        if(~fail) 
            for f=2:1:2^n %test each element of FWT to see if changing  
      %t in TT would give LOWER nonlinearity 
             
                if TTvsFWT4(t,f) == -1 && nextFWT(f) == 5 ||   
    TTvsFWT4(t,f) == 1 && nextFWT(f) == -5 
                    good = 0; %if criteria is met we will move on to  
     %next possible transition                
                end 
            end 
             
            if (good) %if criteria is met, we try the transition   
               disp('Complementing bit:') 
               t 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)-1; %make 1->0 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
      %increased nonlinearity 
                
               switchedbit = 1; 
                
            end 
  
          %this portion of code should never be used. a transition will 
            %never be made due to the checks performed above 
             
        if (nextnonlin < bentNL-2 && switchedbit) %check to see if  
        %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
        end 
                
            good = 1; %reset good 
        end       
end 
     
            %In this case, the TT correct number of 1's/0's (ambiguous 
            %case) This program DEFAULTS to ADDING a 1 
if nextFWT(1) == bentweightLow - 1 || nextFWT(1) == bentweightLow + 1 
|| nextFWT(1) == bentweightHigh -1 || nextFWT(1) == bentweightHigh + 1 
  
     %find the next 0 in the TT to change and increment TT counter 
            t = t + 1; %increment t 
            if t > 2^n %here, there is no 0->1 transition that works 
                        fail = 1; %set fail 
                        t = 1; %reset t to one 
            end 
            while (nextTT(t)== 1 && ~fail) 
                t = t + 1; 
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                if t > 2^n %here, there is no 0->1 transition that  
     %works 
                        fail = 1; %set fail 
                        t = 1; %reset t to one 
                end 
                f = 2; %reset f when a new value of TT entry is used 
            end 
             
        if(~fail)   
            for f=2:1:2^n %test each element of FWT to see if changing  
      %t in TT would give LOWER nonlinearity 
             
                if TTvsFWT4(t,f) == 1 && nextFWT(f) == 5 ||   
    TTvsFWT4(t,f) == -1 && nextFWT(f) == -5 
                    good = 0; %if criteria is not met we will move on  
     %to next possible transition             
                end 
            end 
             
            if (good) %if criteria is met, we try the transition 
               disp('Complementing bit:') 
               t 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)+1; %make 1->0 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
       %increased nonlinearity 
  
               switchedbit = 1; 
  
            end 
             
         %this portion of code should never be used. a transition will 
         %never be made due to the checks performed above 
             
       if (nextnonlin < bentNL-2 && switchedbit) %check to see if  
           %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
       end 
                
            good = 1; %reset good 
        end    
end 
  
  
  
end 
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    if(~fail) 
        truth = nextTT; 
        nonlin = nextnonlin; 
        disp('Correct bit chosen!') 
        disp('') 
        disp('New Truth Table:')            
        disp(truth) 
        disp('Nonlinearity is:') 
        disp(nextnonlin) 
    else 
        disp('Algorithm Failure') 
        truth = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; %output array that 
%signals failure 
        nonlin = 500; %indicates a failure 
    end 
end 
 

6. NLfive.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for a bent function 
%Written: Sep 12, 2010 
%Modified: Nov 15, 2010 
  
  
%INPUTS:  
%TT - the truth table of a Boolean function. TT MUST have length 2^n 
%n - the number of variables in the Boolean function. 
%OUTPUT: 
%truth - the truth table of a bent function. 
%nonlin - the nonlinearity of the output functions 
  
%Note: This code is written and verified for the n=4 case. It can be 
modified to work 
%for other values of n. Bent functions only exist for even n. 
  
function [truth,nonlin] = NLfive(TT,n) 
  
  
  
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bentweightLow = 2^(n-1)-2^(n/2-1); %low value of a bent function's 
%weight 
bentweightHigh = 2^(n-1)+2^(n/2-1); %high value of a bent function's 
%weight 
  
nextTT = TT; %iterative TT array 
nextFWT = FWT(TT,n); %iterative FWT array 
oldTT = TT; %storage for previous TT 
oldFWT = nextFWT; %storage for previous FWT 
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nextnonlin = NL(TT,n); %iterative value of nonlin 
  
t = 0; %t is TT index search variable 
f = 2; %FWT index search variable variable 
good = 1; %variable used to turn on/off while loop 
switchedbit = 0; %variable used to indicate whether bit has been 
%complemented 
  
%matrix that holds information about how FWT changes as input TT is 
%changed 
TTvsFWT4 =  
[1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1; 
1   -1  1   -1  1   -1  1   -1  1   -1  1   -1  1   -1  1   -1; 
1   1   -1  -1  1   1   -1  -1  1   1   -1  -1  1   1   -1  -1; 
1   -1  -1  1   1   -1  -1  1   1   -1  -1  1   1   -1  -1  1; 
1   1   1   1   -1  -1  -1  -1  1   1   1   1   -1  -1  -1  -1; 
1   -1  1   -1  -1  1   -1  1   1   -1  1   -1  -1  1   -1  1; 
1   1   -1  -1  -1  -1  1   1   1   1   -1  -1  -1  -1  1   1; 
1   -1  -1  1   -1  1   1   -1  1   -1  -1  1   -1  1   1   -1; 
1   1   1   1   1   1   1   1   -1  -1  -1  -1  -1  -1  -1  -1; 
1   -1  1   -1  1   -1  1   -1  -1  1   -1  1   -1  1   -1  1; 
1   1   -1  -1  1   1   -1  -1  -1  -1  1   1   -1  -1  1   1; 
1   -1  -1  1   1   -1  -1  1   -1  1   1   -1  -1  1   1   -1; 
1   1   1   1   -1  -1  -1  -1  -1  -1  -1  -1  1   1   1   1; 
1   -1  1   -1  -1  1   -1  1   -1  1   -1  1   1   -1  1   -1; 
1   1   -1  -1  -1  -1  1   1   -1  -1  1   1   1   1   -1  -1; 
1   -1  -1  1   -1  1   1   -1  -1  1   1   -1  1   -1  -1  1];  
  
disp('Input Truth Table is:') 
disp(TT) 
disp('Fast Walsh Transform is:') 
disp(nextFWT) 
disp('Nonlinearity is:') 
disp(nextnonlin) 
  
while (nextnonlin < bentNL) %if function ISNT bent, use algorithm 
  
     
    %In this case, the TT needs one 0 to become a 1 
if (nextFWT(1) == bentweightLow-1 || nextFWT(1) == bentweightHigh-1)  
     
            %find the next 0 in the TT to change and increment TT  
  %counter 
            t = t + 1; %increment t 
            while (nextTT(t)== 1) 
            t = t + 1; 
            f = 2; %reset f when a new value of TT entry is used 
            end 
             
             
            for f=2:1:2^n %test each element of FWT to see if changing  
     %t in TT would give bent function 
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                if TTvsFWT4(t,f) == -1 && nextFWT(f) == 3 ||   
    TTvsFWT4(t,f) == -1 && nextFWT(f) == -1 ||   
   TTvsFWT4(t,f) == 1 && nextFWT(f) == 1 ||    
   TTvsFWT4(t,f) == 1 && nextFWT(f) == -3 
                else 
                    good = 0; %if criteria is not met we will move on  
     %to next possible transition 
                end 
            end 
             
            if (good) %if criteria is met, we try the transition 
               disp('Complementing bit:') 
               disp(t) 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)+1 %make 0->1 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
       %increased nonlinearity 
                 
               switchedbit = 1; %used to indicate if transition was  
      %made 
  
            end 
             
        %this portion of code should never be used. a transition will 
        %never be made due to the checks performed above 
             
    if (nextnonlin < bentNL && switchedbit) %check to see if   
       %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        disp(t) 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT   
        switchedbit = 0; %reset 
    end                
        good = 1; %reset good             
    end 
             
  
        %In this case, the TT needs one 1 to become a 0 
if nextFWT(1) == bentweightLow+1 || nextFWT(1) == bentweightHigh+1  
  
     %find the next 1 in the TT to change and increment TT counter 
            t = t + 1; %increment t 
            while (nextTT(t)== 0) 
            t = t + 1; 
            f = 2; %reset f when a new value of TT entry is used 
            end 
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            for f=2:1:2^n %test each element of FWT to see if changing  
     %t in TT would give bent function 
             
                if TTvsFWT4(t,f) == 1 && nextFWT(f) == 3 ||   
    TTvsFWT4(t,f) == 1 && nextFWT(f) == -1||   
    TTvsFWT4(t,f) == -1 && nextFWT(f) == 1 ||   
    TTvsFWT4(t,f) == -1 && nextFWT(f) == -3 
                else 
                    good = 0; %if criteria is not met we will move on  
     %to next possible transition 
                end 
            end 
             
            if (good) %if criteria is met, we try the transition 
               disp('Complementing bit:') 
               disp(t) 
               oldTT = nextTT; %store old TT 
               nextTT(t) = nextTT(t)-1; %make 1->0 transition in the TT 
               oldFWT = nextFWT; %store old FWT 
               nextFWT = FWT(nextTT,n); %get FWT of new TT 
               nextnonlin = NL(nextFWT,n); %check to see if transition  
       %increased nonlinearity 
  
               switchedbit = 1; %used to indicate if transition was  
      %made 
  
            end 
             
          %this portion of code should never be used. a transition will 
          %never be made due to the checks performed above 
             
     if (nextnonlin < bentNL && switchedbit) %check to see if   
       %transition worked 
        disp('Unsuccessful bit chosen. Restoring original Truth Table') 
        disp(t) 
        nextTT = oldTT; %if not, undo transition 
        t = t + 1; %try again with next digit 
        nextFWT = oldFWT; %and restore old FWT 
        switchedbit = 0; %reset 
     end               
        good = 1; %reset good             
     end 
     
end 
disp('Correct bit chosen!') 
disp('') 
disp('Bent Function Truth Table:')            
truth = nextTT; 
nonlin = nextnonlin; 
end 



 88

7. findbent3.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to for functions with NL=4 given 
%ALL functions with NL=3 
  
%Written: Sep 12, 2010 
%Modified: Nov 4, 2010 
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%OUTPUTS: none 
% 
%This program will display the number of functions tested, the number 
%of successes, the number of failures, and the number of unique 
%functions produced by successes.. 
  
  
%This code is written for the n=4 case. It can be modified to work 
%for other values of n. Bent functions only exist for even n. 
  
function [] = findbent3(n) 
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bent = 0; %counts unique number of functions found 
numberTested = 0; %counts number of functions tested 
failures = 0; %counts number of algorithm failures 
success = 0; %counts number of algorithm successes 
bentTT = []; %gathers bent function TTs 
  
TT = functGen(n,0,0); %generate first function to be tested 
  
truth = []; %initialize truth array  
  
for t=1:1:2^(2^n) 
  
    if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]))  %stop if 1  
        %function is reached    
    TT = functGen(n,t,TT)%get next TT 
    end 
  
a = FWT(TT,n); %find the FWT of the input TT 
nonlin = NL(a,n); %find the NL of the input TT 
  
while (nonlin == bentNL-3) %Only examine for NL = 3 
  
     
    [truth,nonlin] = NLthree(TT,n); %produce TT with higher NL 
    numberTested = numberTested + 1; 
     
    if (nonlin == bentNL-2) 
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        bentTT = [bentTT;truth]; %if function with NL=4 produced,  
        %collect it 
        success = success + 1; 
    end 
     
    if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0])) 
        failures = failures + 1; %count a failure if algorithm returned 
        %failure array 
    end 
     
     
end 
     
  
  
     
end 
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number  
     %of UNIQUE functions with NL=4 found 
numberTested 
success 
failures 
end 
 

8. findbent3to5.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for a functions 
%with NL=5 given all functions with NL=3 
 
%Written: Sep 12, 2010 
%Modified: Nov 4, 2010 
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%OUTPUTS: none 
% 
%This program will display the number of functions tested, the number 
%of successes, the number of failures, and the number of unique 
%functions produced by successes. 
  
  
%This code is written for the n=4 case. It can be modified to work 
%for other values of n. Bent functions only exist for even n. 
  
function [] = findbent3to5(n) 
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bent = 0; %counts unique number of functions found 
numberTested = 0; %counts number of functions tested 
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failures = 0; %counts number of algorithm failures 
success = 0; %counts number of algorithm successes 
bentTT = []; %gathers bent function TTs 
  
TT = functGen(n,0,0); %generate first function to be tested 
  
truth = []; %initialize truth array  
  
for t=1:1:2^(2^n) 
  
    if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]))  %stop of 1  
        %function is reached    
    TT = functGen(n,t,TT)%get next TT 
    end 
  
a = FWT(TT,n); %find the FWT of the input TT 
nonlin = NL(a,n); %find the NL of the input TT 
  
while (nonlin == bentNL-3) %Only examine for NL = 3 
  
     
    [truth,nonlin] = NLthree(TT,n); %produce TT with higher NL 
    numberTested = numberTested + 1; 
     
     if (nonlin == bentNL-2) %if we produced a function with NL = 4 
        [truth, nonlin] = NLfour(truth,n); %now see if we can find  
     %function with NL = 5 
     end 
     
    if (nonlin == bentNL-1) 
        bentTT = [bentTT;truth]; %if function with NL = 5 produced,  
        %collect it! 
        success = success + 1; 
    end 
     
    if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0])) 
        failures = failures + 1; %count a failure if algorithm returned 
     %failure array 
    end 
     
     
     
end 
     
  
  
     
end 
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number  
     %of UNIQUE functions with NL=5 found 
numberTested 
success 
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failures 
end 

9. findbent3to6.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for a bent function 
%given ALL functions with NL=3 as inputs 
 
%Written: Sep 12, 2010 
%Modified: Nov 4, 2010 
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%OUTPUTS: none 
% 
%This program will display the number of functions tested, the number 
%of successes, the number of failures, and the number of unique 
%functions produced by successes. 
  
  
%This code is written for the n=4 case. It can be modified to work 
%for other values of n. Bent functions only exist for even n. 
  
function [] = findbent3to6(n) 
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bent = 0; %counts unique number of functions found 
numberTested = 0; %counts number of functions tested 
failures = 0; %counts number of algorithm failures 
success = 0; %counts number of algorithm successes 
bentTT = []; %gathers bent function TTs 
  
TT = functGen(n,0,0); %generate first function to be tested 
  
truth = []; %initialize truth array  
  
for t=1:1:2^(2^n) 
  
    if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]))  %stop if 1  
       %function is reached    
    TT = functGen(n,t,TT)%get next TT 
    end 
  
a = FWT(TT,n); %find the FWT of the input TT 
nonlin = NL(a,n); %find the NL of the input TT 
  
  
while (nonlin == bentNL-3) %Only examine for NL = 3 
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    [truth,nonlin] = NLthree(TT,n); %produce TT with higher NL 
    numberTested = numberTested + 1; 
     
     if (nonlin == bentNL-2) %if we produced a function with NL = 4 
        [truth, nonlin] = NLfour(truth,n); %now see if we can find  
       %function with NL = 5 
     end 
     
    if (nonlin == bentNL-1) 
        [truth, nonlin] = NLfive(truth,n); %now see if we can find a  
       %bent function! 
        bentTT = [bentTT;truth]; %if bent function produced, collect it 
        success = success + 1; 
    end 
     
    if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0])) 
        failures = failures + 1; %count a failure if algorithm returned 
      %failure array 
    end 
     
     
     
end 
   
end 
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number  
      %of UNIQUE bent functions found 
numberTested 
success 
failures 
end 

10. findbent4.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for a functions 
%with NL=5 given ALL functions with NL=4 
  
%Written: Sep 12, 2010 
%Modified: Nov 4, 2010 
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%OUTPUTS: none 
% 
%This program will display the number of functions tested, the number 
%of successes, the number of failures, and the number of unique 
%functions produced by successes. 
  
  
%This code is written for the n=4 case. It can be modified to work 
%for other values of n. Bent functions only exist for even n. 
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function [] = findbent4(n) 
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bent = 0; %counts unique number of functions found 
numberTested = 0; %counts number of functions tested 
failures = 0; %counts number of algorithm failures 
success = 0; %counts number of algorithm successes 
bentTT = []; %gathers bent function TTs 
  
TT = functGen(n,0,0); %generate first function to be tested 
  
truth = []; %initialize truth array  
  
for t=1:1:2^(2^n) 
  
    if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]))  %stop if 1  
        %function is reached    
    TT = functGen(n,t,TT)%get next TT 
    end 
  
a = FWT(TT,n); %find the FWT of the input TT 
nonlin = NL(a,n); %find the NL of the input TT 
  
  
while (nonlin == bentNL-2) %Only examine for NL = 4 
  
     
    [truth,nonlin] = NLfour(TT,n); %produce TT with higher NL 
    numberTested = numberTested + 1; 
     
    if (nonlin == bentNL-1) 
        bentTT = [bentTT;truth]; %if bent function produced, collect it 
        success = success + 1; 
    end 
     
    if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0])) 
        failures = failures + 1; %count a failure if algorithm returned 
     %failure array 
    end 
     
     
end 
     
      
end 
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number  
     %of UNIQUE  functions found with NL = 5 
numberTested 
success 
failures 
end 
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11. findbent4to6.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for bent functions 
%given ALL functions with NL=4 
  
%Written: Sep 12, 2010 
%Modified: Nov 15, 2010 
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%OUTPUTS: none 
% 
%This program will display the number of functions tested, the number 
%of successes, the number of failures, and the number of unique 
%functions produced by successes. 
  
  
%This code is written for the n=4 case. It can be modified to work 
%for other values of n. Bent functions only exist for even n. 
  
function [] = findbent4to6(n) 
  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bent = 0; %counts unique number of functions found 
numberTested = 0; %counts number of functions tested 
failures = 0; %counts number of algorithm failures 
success = 0; %counts number of algorithm successes 
bentTT = []; %gathers bent function TTs 
  
TT = functGen(n,0,0); %generate first function to be tested 
  
truth = []; %initialize truth array  
  
for t=1:1:2^(2^n) 
  
    if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]))  %stop if 1  
        %function is reached    
    TT = functGen(n,t,TT)%get next TT 
    end 
  
a = FWT(TT,n); %find the FWT of the input TT 
nonlin = NL(a,n); %find the NL of the input TT 
  
  
while (nonlin == bentNL-2) %Only examine for NL = 4 
  
     
    [truth,nonlin] = NLfour(TT,n); %produce TT with higher NL 
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    numberTested = numberTested + 1; 
     
    if (nonlin == bentNL-1) %if we produced a function with NL = 5 
        [truth, nonlin] = NLfive(truth,n); %now see if we can find a  
       %bent function! 
        bentTT = [bentTT;truth]; %if bent function produced, collect it 
        success = success + 1; 
    end 
     
    if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0])) 
        failures = failures + 1; %count a failure if algorithm returned 
     %failure array 
    end 
     
     
     
end 
     
  
  
     
end 
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number  
      %of UNIQUE bent functions found 
numberTested 
success 
failures 
end 

12. findbent5.m 

%% 
%Timothy O'Dowd 
%MATLAB Code to implement algorithm to search for bent functions 
%given ALL functions with NL=5 
 
%Written: Sep 12, 2010 
%Modified: Nov 4, 2010 
  
%INPUTS:  
%n - the number of variables in the Boolean function. 
%OUTPUTS: none 
% 
%This program will display the number of functions tested, the number 
%of successes, the number of failures, and the number of unique 
%functions produced by successes.  
  
  
%This code is written for the n=4 case. It can be modified to work 
%for other values of n. Bent functions only exist for even n. 
  
function [] = findbent5(n) 



 96

  
bentNL = 2^(n-1)-2^(n/2-1); %any bent function will have this NL 
bent = 0; %counts unique number of bent functions found 
numberTested = 0; %counts number of functions tested 
failures = 0; %counts number of algorithm failures 
success = 0; %counts number of algorithm successes 
bentTT = []; %gathers bent function TTs 
  
TT = functGen(n,0,0); %generate first function to be tested 
  
truth = []; %initialize truth array  
  
for t=1:1:2^(2^n) 
  
    if(~isequal(TT,[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]))  %stop if 1  
        %function is reached    
    TT = functGen(n,t,TT)%get next TT 
    end 
  
a = FWT(TT,n); %find the FWT of the input TT 
nonlin = NL(a,n); %find the NL of the input TT 
 
while (nonlin == bentNL-1) %Only examine for NL = 5 
  
     
    [truth,nonlin] = NLfive(TT,n); %produce TT with higher NL 
    numberTested = numberTested + 1; 
     
    if (nonlin == bentNL) 
    bentTT = [bentTT;truth]; %if bent function produced, collect it 
    success = success + 1; 
    end 
     
    if (isequal(truth,[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0])) 
    failures = failures + 1; %count a failure if algorithm returned  
     %failure array 
    end 
     
     
end 
     
  
  
     
end 
[bent sizeBent] = size(unique(bentTT,'rows')) %Bent returns the number  
      %of UNIQUE bent functions found 
numberTested 
success 
failures 
end 
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